SCES065A - JANUARY 1996 - REVISED NOVEMBER 1996

DGG OR DL PACKAGE

(TOP VIEW)

- **Member of the Texas Instruments** Widebus™ Family
- **EPIC™** (Enhanced-Performance Implanted **CMOS) Submicron Process**
- Output Ports Have Equivalent 26- Ω Series Resistors, So No External Resistors Are Required.
- **ESD Protection Exceeds 2000 V Per** MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JEDEC Standard JESD-17
- Bus Hold on Data Inputs Eliminates the **Need for External Pullup/Pulldown** Resistors
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages

description

This 16-bit buffer/driver is designed for 2.3-V to 3.6-V V_{CC} operation.

The SN74ALVCH162244 is designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

10E 48 20E 1Y1 2 47 1A1 1Y2 🛮 3 46**∏** 1A2 GND 45 GND 1Y3 44 🛮 1A3 1Y4 43**∏** 1A4 6 42 🛮 V_{CC} V_{CC} 2Y1 8 41 🛮 2A1 2Y2 **1**9 40 2A2 GND 39 GND 10 2Y3 38 2A3 11 2Y4 1 12 37 1 2A4 36 3A1 3Y1 П 13 3Y2 [35 3A2 14 GND II 15 34 II GND 3Y3 33 🛮 3A3 16 3Y4 17 32 3A4 V_{CC} 31 V_{CC} 18 4Y1 19 30 **∏** 4A1 4Y2 **∏** 20 29**∏** 4A2 GND 1 21 28 GND

4Y3 **1**22

23

24

4Y4

40E

27 4A3

26 4A4

25 3OE

The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. It provides true outputs and symmetrical active-low output-enable (OE) inputs.

The outputs, which are designed to sink up to 12 mA, include 26- Ω resistors to reduce overshoot and undershoot.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

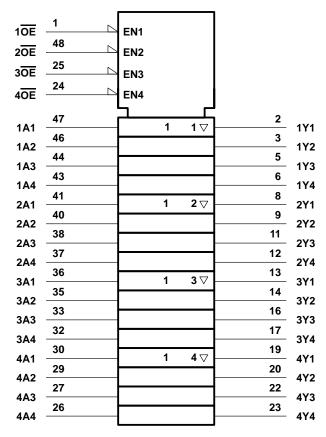
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74ALVCH162244 is available in TI's shrink small-outline (DL) and thin shrink small-outline (DGG) packages, which provide twice the I/O pin count and functionality of standard small-outline packages in the same printed circuit board area.

The SN74ALVCH162244 is characterized for operation from -40°C to 85°C.

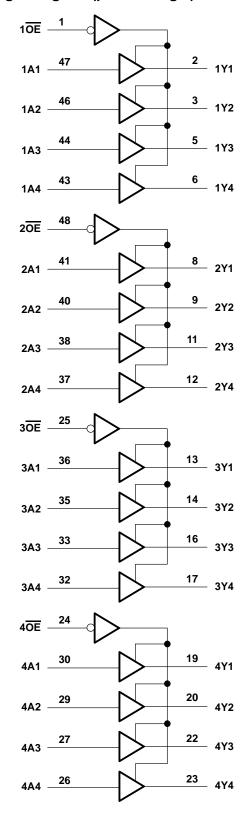
FUNCTION TABLE (each 4-bit buffer)

INPU	JTS	OUTPUT
OE	Α	Y
L	Н	Н
L	L	L
Н	Χ	Z



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.


ISTRUMENTS

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SCES065A - JANUARY 1996 - REVISED NOVEMBER 1996

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Storage temperature range, T _{stg}	Input v Output Input c Output Contine	voltage range, V_{CC} voltage range, V_{I} (see Note 1) to voltage range, V_{O} (see Notes 1 and 2) that can be current, I_{IK} (V_{I} < 0) to clamp current, I_{OK} (V_{O} < 0 or V_{O} > V_{CC}) to uous output current, I_{O} (V_{O} = 0 to V_{CC}) uous current through each V_{CC} or GND the component of the current		V to 4.6 V CC + 0.5 V 50 mA . ±50 mA . ±50 mA ±100 mA 1 W
otorage temperature range, ista			DL package	1.4 W

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - 2. This value is limited to 4.6 V maximum.
 - 3. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the *Package Thermal Considerations* application note in the *ABT Advanced BiCMOS Technology Data Book*.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT	
Vcc	Supply voltage		2.3	3.6	V	
.,	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		1.7		٧	
VIH	High-level input voltage	V _{CC} = 2.7 V to 3.6 V	2		V	
	Low lovel input veltage	V _{CC} = 2.3 V to 2.7 V		0.7	V	
VIL	Low-level input voltage	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8	V	
٧ı	Input voltage		0	VCC	V	
٧o	Output voltage		0	VCC	V	
		V _{CC} = 2.3 V		-6		
IOH	High-level output current	V _{CC} = 2.7 V		-8	mA	
		V _{CC} = 3 V		-12		
		V _{CC} = 2.3 V		6		
lOL	Low-level output current	V _{CC} = 2.7 V		8	mA	
	V _{CC} = 3 V			12		
Δt/Δν	Input transition rise or fall rate		0	10	ns/V	
T _A	Operating free-air temperature		-40	85	°C	

NOTE 4: Unused control inputs must be held high or low to prevent them from floating.

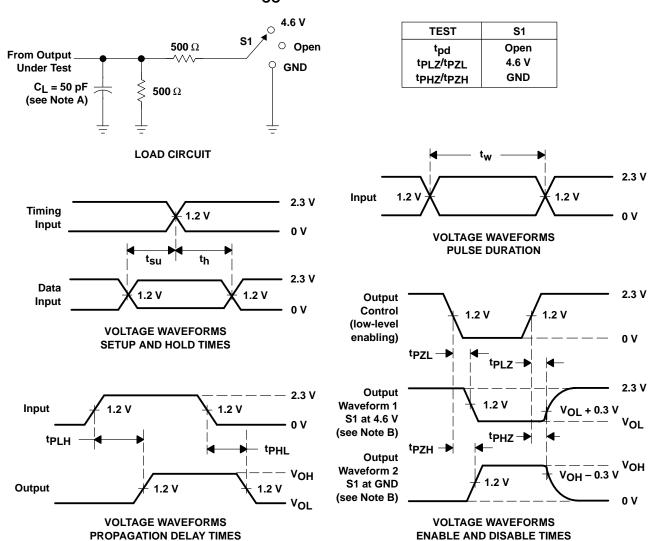
SCES065A - JANUARY 1996 - REVISED NOVEMBER 1996

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PA	RAMETER	TEST CO	ONDITIONS	VCC	MIN	TYP [†]	MAX	UNIT	
		I _{OH} = -100 μA		2.3 V to 3.6 V	to 3.6 V V _{CC} -0.2				
		I _{OH} = -4 mA	V _{IH} = 1.7 V	2.3 V 1.9					
\/a++		I _{OH} = -6 mA	V _{IH} = 1.7 V	2.3 V	1.7			V	
VOH		I _{OH} = –8 mA	V _{IH} = 2 V	2.7 V	2			V	
		I _{OH} = -6 mA	V _{IH} = 2 V	3 V	2.4				
		I _{OH} = -12 mA	V _{IH} = 2 V	3 V	2				
		I _{OL} = 100 μA		2.3 V to 3.6 V			0.2		
		I _{OL} = 4 mA	V _{IL} = 0.7 V	2.3 V			0.4		
VOL		I _{OL} = 6 mA	V _{IL} = 0.7 V	2.3 V			0.55	V	
VOL		$I_{OL} = 8 \text{ mA}$	V _{IL} = 0.8 V	2.7 V			0.6		
		$I_{OL} = 6 \text{ mA}$	V _{IL} = 0.8 V	3 V			0.55		
		I _{OL} = 12 mA	V _{IL} = 0.8 V	3 V			0.8	V	
lį		$V_I = V_{CC}$ or GND		3.6 V			±5	μΑ	
		V _I = 0.7 V		2.3 V	45				
		V _I = 1.7 V		2.3 V	-45				
I _{I(hold)}		V _I = 0.8 V		3 V	75			μΑ	
		V _I = 2 V		3 V	-75				
		V _I = 0 to 3.6 V [‡]		3.6 V			±500		
loz		$V_O = V_{CC}$ or GND		3.6 V			±10	μΑ	
Icc		$V_I = V_{CC}$ or GND,	I _O = 0	3.6 V			40	μΑ	
Δlcc		One input at V _{CC} – 0.6 V,	Other inputs at V _{CC} or GND	3 V to 3.6 V			750	μΑ	
C.	Control inputs	VI = Voc or GND		3.3 V		3		pF	
Ci	Data inputs	V _I = V _{CC} or GND		3.3 v	6			PΓ	
Co	Outputs	$V_O = V_{CC}$ or GND		3.3 V		7		pF	

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figures 1 and 2)

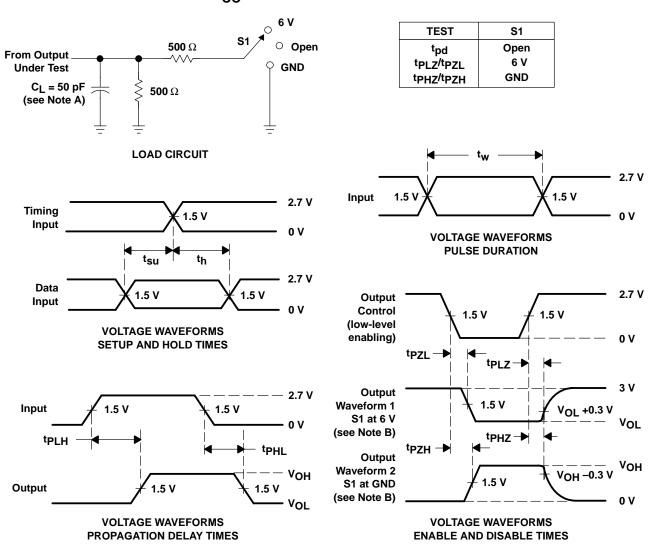
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} =	2.5 V 2 V	V _{CC} =	2.7 V	V _{CC} =	3.3 V 3 V	UNIT
	(INFOT)	(001701)	MIN	MAX	MIN	MAX	MIN	MAX	
^t pd	А	Υ	1	5.5		4.7	1	4.2	ns
^t en	ŌE	Y	1	7.3		6.7	1	5.6	ns
^t dis	ŌĒ	Υ	1	6.5		5.7	1	5.5	ns


operating characteristics, T_A = 25°C

PARAMETER			TEST CONDITIONS	V _{CC} = 2.5 V ± 0.2 V	V _{CC} = 3.3 V ± 0.3 V	UNIT	
				TYP	TYP		
C _{pd} Power dissipation capacitance	Ver dissipation capacitance Outputs enabled $C_1 = 50 \text{ pF}, f = 10$	Cı = 50 pF. f = 10 MHz	16	19	pF		
	Outputs disabled	CL = 50 pr, T = 10 MH2	4	5	pr		

[†] Typical values are measured at V_{CC} = 3.3 V, T_A = 25°C. ‡ This is the bus-hold maximum dynamic current required to switch the input from one state to another.

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.5 V \pm 0.2 V


NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpl 7 and tpH7 are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tod.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7 V AND 3.3 V \pm 0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_{O} = 50 \Omega$, $t_{r} \leq$ 2.5 ns, $t_{f} \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated