SCES057B - OCTOBER 1995 - REVISED JANUARY 1997

 Member of the Texas Instruments Widebus™ Family 	DGG OR DL PACKAGE (TOP VIEW)			
 EPIC ™ (Enhanced-Performance Implanted CMOS) Submicron Process 			OEB	
 Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown 	2B3 [] GND []	3 54	2B4 GND	
Resistors	2B2		2B5	
 Packaged in Plastic Shrink Small-Outline 	2B1 🛛	6 51	2B6	
(DL) and Thin Shrink Small-Outline (DGG)	V _{CC} [7 50] v _{cc}	
Packages	A1 [] 8		2B7	
deparintion	A2 🛛 9		2B8	
description	A3 🛛		2B9	
This 12-bit to 24-bit bus exchanger is designed for			GND	
2.3-V to 3.3-V V _{CC} operation.	A4 []		2B10	
The SN74ALVCH16272 is intended for applica-	A5 []		2B11	
tions where two separate datapaths must be	A6 []		2B12	
multiplexed onto, or demultiplexed from, a single	A7 [] ⁻ A8 [] ⁻] 1B12	
datapath. This device is particularly suitable as an	A8 [] A9 [] 1] 1B11	
interface between conventional DRAMs and] 1B10] GND	
high-speed microprocessors.] 1B9	
Data from the A inpute is stared in the internal	A11 []] 1B9] 1B8	
Data from the A inputs is stored in the internal registers on the low-to-high transition of the clock	A12 []		1B7	
(CLK) input, when the CLKENA inputs are low. A		22 35] v _{cc}	
two-stage pipeline is provided in each of the	1B1	23 34	1B6	
A-to-1B and A-to-2B paths to serve as a shallow	1B2		1B5	
write buffer.	GND :		GND	
Transparent latches are provided in the B-to-A	1B3 [] 2		1B4	

Transparent latches are provided in the B-to-A path to allow asynchronous operation to maximize memory access throughput. These latches transfer data when the latch-enable ($\overline{\text{LE}}$) inputs are low. The select ($\overline{\text{SEL}}$) line selects 1B or 2B data for the A outputs. Data flow is controlled by the active-low output enables ($\overline{\text{OEA}}$, $\overline{\text{OEB}}$).

<
ш
~
Ш
R
Δ
⊢
<u>с</u>
Ď
0
Ř

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

E2B

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74ALVCH16272 is available in TI's shrink small-outline (DL) and thin shrink small-outline (DGG) packages, which provide twice the I/O pin count and functionality of standard small-outline packages in the same printed circuit board area.

The SN74ALVCH16272 is characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

30 CLKENA1

CLK

29 **П**

SCES057B – OCTOBER 1995 – REVISED JANUARY 1997

logic diagram (positive logic)

PRODUCT PREVIEW

SN74ALVCH16272 **12-BIT TO 24-BIT MULTIPLEXED BUS EXCHANGER** WITH 3-STATE OUTPUTS SCES057B – OCTOBER 1995 – REVISED JANUARY 1997

Function Tables

OUTPUT ENABLE

INPUTS		OUTPUTS		
OEA	OEB	A 1B, 2B		
Н	Н	Z	Z	
н	L	Z	Active	
L	Н	Active	Z	
L	L	Active	Active	

A-TO-B STORAGE ($\overline{OEB} = L$)

INPUTS			OUTPUTS				
CLKENA1	CLKENA2	CLK	Α	1B	2B		
Н	Н	Х	Х	1B0†	2B0†		
L	Х	\uparrow	L	Lţ	х		
L	Х	\uparrow	Н	н†	х		
Х	L	\uparrow	L	Х	L		
Х	L	\uparrow	н	A ₀	н		

[†]Two CLK edges are needed to propagate data.

B-TO-A STORAGE ($\overline{OEA} = L$)

INPUTS			OUTPUT			
LE	SEL	1B	2B	Α		
Н	Х	Х	Х	A0‡		
Н	Х	Х	х	А ₀ ‡ А ₀ ‡		
L	н	L	х	L		
L	н	Н	х	Н		
L	L	Х	L	L		
L	L	Х	н	Н		

[‡]Output level before the indicated steady-state input conditions were established

SCES057B - OCTOBER 1995 - REVISED JANUARY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} Input voltage range, VI: Except I/O ports (see Note 1) I/O ports (see Notes 1 and 2) Output voltage range, V_O (see Notes 1 and 2) Input clamp current, I_{IK} ($V_I < 0$) Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$) Continuous output current, I_O ($V_O = 0$ to V_{CC}) Continuous current through each V_{CC} or GND	$\begin{array}{c} -0.5 \ \text{V to } 4.6 \ \text{V} \\ -0.5 \ \text{V to } \ \text{V}_{\text{CC}} + 0.5 \ \text{V} \\ -0.5 \ \text{V to } \ \text{V}_{\text{CC}} + 0.5 \ \text{V} \\ -0.5 \ \text{V to } \ \text{V}_{\text{CC}} + 0.5 \ \text{V} \\ -50 \ \text{mA} \\ \pm 50 \ \text{mA} \\ \end{array}$
Continuous current through each V_{CC} or GND Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 3): [±100 mA
	DL package 1.4 W

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

- 2. This value is limited to 4.6 V maximum.
- 3. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the ABT Advanced BiCMOS Technology Data Book.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT	
VCC	Supply voltage		2.3	3.6	V	
v	High lovel input veltage	V_{CC} = 2.3 V to 2.7 V	1.7		v	
VIH	VIH High-level input voltage	V_{CC} = 2.7 V to 3.6 V	2		v	
		V_{CC} = 2.3 V to 2.7 V		0.7	v	
VIL	Low-level input voltage	V_{CC} = 2.7 V to 3.6 V		0.8	V	
VI	Input voltage		0	VCC	V	
VO	Output voltage		0	VCC	V	
		$V_{CC} = 2.3 V$		-12		
ЮН	High-level output current	V _{CC} = 2.7 V		-12	mA	
		V _{CC} = 3 V		-24		
		V _{CC} = 2.3 V		12		
IOL Low-level output current	Low-level output current	V _{CC} = 2.7 V		12	mA	
		V _{CC} = 3 V		24	1	
$\Delta t/\Delta v$	Input transition rise or fall rate		0	10	ns/V	
TA	Operating free-air temperature		-40	85	°C	

NOTE 4: Unused control inputs must be held high or low to prevent them from floating.

SCES057B - OCTOBER 1995 - REVISED JANUARY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PA	RAMETER	TEST CO	ONDITIONS	Vcc	MIN	TYP†	MAX	UNIT	
		I _{OH} = -100 μA		2.3 V to 3.6 V	V _{CC} -0	.2			
		I _{OH} = -6 mA,	V _{IH} = 1.7 V	2.3 V	2				
Val			V _{IH} = 1.7 V	2.3 V	1.7			V	
VOH		I _{OH} = -12 mA	V _{IH} = 2 V	2.7 V	2.2			v	
			V _{IH} = 2 V	3 V	2.4				
		I _{OH} = -24 mA,	V _{IH} = 2 V	3 V	2				
		I _{OL} = 100 μA		2.3 V to 3.6 V			0.2		
		I _{OL} = 6 mA,	V _{IL} = 0.7 V	2.3 V			0.4		
VOL		I _{OL} = 12 mA	V _{IL} = 0.7 V	2.3 V			0.7	V	
			V _{IL} = 0.8 V	2.7 V			0.4		
		I _{OL} = 24 mA,	V _{IL} = 0.8 V	3 V			0.55		
lj –		$V_I = V_{CC}$ or GND		3.6 V			±5	μA	
		V _I = 0.7 V		0.01/	45				
		V _I = 1.7 V		2.3 V	-45				
I _{I(hold)}		V _I = 0.8 V		3 V	75			μA	
. ,		V _I = 2 V		3 V	-75				
		V _I = 0 to 3.6 V [‡]		3.6 V			±500		
loz§		$V_{O} = V_{CC}$ or GND		3.6 V			±10	μA	
ICC		$V_I = V_{CC}$ or GND,	I ^O = 0	3.6 V			40	μA	
∆ICC		One input at V _{CC} – 0.6 V,	Other inputs at V_{CC} or GND	3 V to 3.6 V			750	μA	
Ci	Control inputs	V _I = V _{CC} or GND		3.3 V				pF	
C _{io}	A or B ports	$V_{O} = V_{CC}$ or GND		3.3 V				pF	

[†] Typical values are measured at V_{CC} = 3.3 V, T_A = 25°C.

[‡]This is the bus-hold maximum dynamic current required to switch the input from one state to another.

 $\$ For I/O ports, the parameter IOZ includes the input leakage current.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated