
SCES049C - AUGUST 1995 - REVISED OCTOBER 1996

- Translate Between GTL/GTL+ Signal Levels and LVTTL
- Members of the Texas Instruments Widebus™ Family
- Support GTL/GTL+ Signal Operation on B Port
- D-Type Flip-Flops With Qualified Storage Enable
- Bus-Hold Data Inputs Eliminate the Need for External Pullup or Pulldown Resistors on A Port
- Flow-Through Architecture Facilitates Printed-Circuit-Board Layout
- Package Options Include Plastic Thin-Shrink Small-Outline (DGG) and Ceramic Quad Flat (HV) Packages

SN54GTL16622 . . . HV PACKAGE (TOP VIEW)

SN74GTL16622...DGG PACKAGE (TOP VIEW)

	ι,	O. V.	_,,	
	\mathcal{L}	U		1
OEAB	<u> </u> 1			CLKAB
1A1			F	1CEAB
GND		3		1CEBA
1A2			61	1B1
1A3				GND
GND] 6	;		1B2
V_{CC}	9 7	•		1B3
1A4		}	57	V _{CC}
GND)	56	1B4
1A5		0	55] 1B5
1A6	1	1	54] 1B6
GND	1	2	53] GND
1A7	1	3	52] 1B7
1A8	1	4	51] 1B8
GND	1	5	50] GND
1A9	1	6	49] 1B9
2A1	1	7	48] 2B1
GND	1	8	47	GND
2A2	1	9	46	2B2
2A3	1 2	20	45	2B3
GND		21		GND
2A4		22	43	2B4
2A5	1 2	23		2B5
GND	7	24		2B6
2A6	\mathbf{I}_{2}	25	40	V _{REF}
V_{CC}	_	26	39	
GND	_	27		2B8
2A7	7	28		GND
2A8	_	29	L	2B9
GND		80		2CEBA
2A9		31		2CEAB
OEBA		32	33	

NC - No internal connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments Incorporated.

SN54GTL16622, SN74GTL16622 18-BIT LVTTL-TO-GTL/GTL+ TRANSCEIVERS

SCES049C - AUGUST 1995 - REVISED OCTOBER 1996

description

These 18-bit registered bus transceivers contain two sets of D-type flip-flops for temporary storage of data flowing in either direction.

The B port operates at GTL ($V_{TT} = 1.2 \text{ V}$ and $V_{REF} = 0.8 \text{ V}$) and GTL+ ($V_{TT} = 1.5 \text{ V}$ and $V_{REF} = 1 \text{ V}$) levels, while the A port and control inputs are compatible with LVTTL logic levels.

Data flow in each direction is controlled by output-enable (OEAB and OEBA) and clock (CLKAB and CLKBA) inputs. The clock-enable (CEAB and CEBA) inputs are designed to control each 9-bit transceiver independently, which makes the device more versatile.

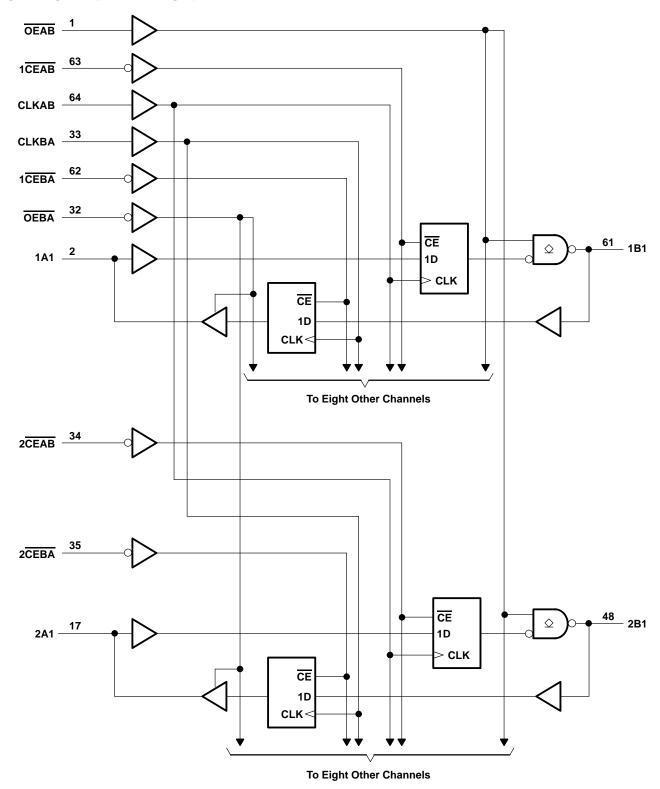
For A-to-B data flow, the devices operate on the low-to-high transition of CLKAB if \overline{CEAB} is low. When \overline{OEAB} is low, the outputs are active. When \overline{OEAB} is high, the outputs are in the high-impedance state. Data flow for B to A is similar to that for A to B, but uses \overline{OEBA} , CLKBA, and \overline{CEBA} .

Active bus-hold circuitry is provided to hold unused or floating TTL inputs at a valid logic state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54GTL16622 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74GTL16622 is characterized for operation from –40°C to 85°C.

FUNCTION TABLET


	INP	UTS		OUTPUT	MODE			
CEAB	OEAB	CLKAB	Α	В	MODE			
Х	Н	Х	Χ	Z				
Н	L	Х	Χ	в ₀ ‡	Latched storage of A data			
Х	L	H or L	Χ	В ₀ ‡ В ₀ ‡	Lateried Storage of A data			
L	L	↑	L	L	Clasked storage of A data			
L	L	\uparrow	Н	Н	Clocked storage of A data			

[†] A-to-B data flow is shown: B-to-A data flow is similar but uses OEBA, CLKBA, and CEBA.

[‡] Output level before the indicated steady-state input conditions are established

logic diagram (positive logic)

Pin numbers shown are for the DGG package.

SN54GTL16622, SN74GTL16622 18-BIT LVTTL-TO-GTL/GTL+ TRANSCEIVERS

SCES049C - AUGUST 1995 - REVISED OCTOBER 1996

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	–0.5 V to 4.6 V
Input voltage range, V _I (see Note 1): A port/B port	–0.5 V to 4.6 V
Voltage range applied to any output in the high or power-off state, VO	
(see Note 1): A port/B port	–0.5 V to 4.6 V
Current into any output in the low state, IO: A port	48 mA
B port	100 mA
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Maximum power dissipation at T _A = 55°C (in still air) (see Note 2): DGG package	1.3 W
Storage temperature range, T _{stq}	−65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - 2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 1000 mils. For more information, refer to the *Package Thermal Considerations* application note in the *ABT Advanced BiCMOS Technology Data Book*.

recommended operating conditions (see Note 3)

			SN5	4GTL1662	2	SN74GTL16622			LINIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		3.15	3.3	3.45	3.15	3.3	3.45	V
\/	Termination	GTL	1.14	1.2	1.26	1.14	1.2	1.26	V
VTT	voltage	GTL+	1.35	1.5	1.65	1.35	1.5	1.65	V
V	Supply	GTL	0.74	0.8	0.87	0.74	0.8	0.87	V
VREF	voltage	GTL+	0.87	1	1.1	0.87	1	1.1	V
\/: lea	lanut voltage	B port	0	Z	VTT	0		VTT	V
VI	Input voltage	Except B port	0	, I	Vcc	0		VCC	V
V	High-level	B port	V _{REF} +50 mV	Op.		VREF+50 mV			V
VIH	input voltage	Except B port	2	6		2			V
V	Low-level	B port	4	5 v	REF-50 mV			V _{REF} -50 mV	V
VIL	input voltage	Except B port	0%)	0.8			8.0	V
lικ	Input clamp current		Q.		-18			-18	mA
lOH	High-level output current	A port			-24			-24	mA
lOL	Low-level output current	A port			24			24	A
		B port			50			50	mA
TA	Operating free-air to	emperature	– 55		125	-40		85	°C

NOTE 3: Unused control inputs must be held high or low to prevent them from floating.

SCES049C - AUGUST 1995 - REVISED OCTOBER 1996

electrical characteristics over recommended operating free-air temperature range, $V_{REF} = 1 \text{ V}$ (unless otherwise noted)

PARAMETER		TEST COND	NTIONS	SN54	GTL1662	22	SN74	GTL1662	2	UNIT
PAR	AMETER	IEST CONL	DITIONS	MIN	TYP†	MAX	MIN			UNII
VIK		V _{CC} = 3.15 V,	I _I = -18 mA			-1.2			-1.2	V
		$V_{CC} = 3.15 \text{ V to } 3.45 \text{ V},$	I _{OH} = -100 μA	V _{CC} -0.2			V _{CC} -0.2			
Vон	A port	V _{CC} = 3.15 V	$I_{OH} = -12 \text{ mA}$	2.4			2.4			V
		VCC = 3.13 V	$I_{OH} = -24 \text{ mA}$	2			2			
		$V_{CC} = 3.15 \text{ V to } 3.45 \text{ V},$	$I_{OL} = 100 \mu A$			0.2			0.2	
	A port	V _{CC} = 3.15 V	I _{OL} = 12 mA			0.4			0.4	
		VCC = 3.13 V	$I_{OL} = 24 \text{ mA}$			0.5			0.5	
V_{OL}		$V_{CC} = 3.15 \text{ V to } 3.45 \text{ V},$	I _{OL} = 100 μA			0.2			0.2	V
	B port		I _{OL} = 10 mA			0.2			0.2	
	Броп	$V_{CC} = 3.15 \text{ V}$	$I_{OL} = 40 \text{ mA}$		14	0.4			0.4	
			I _{OL} = 50 mA		2	0.55			0.55	
lį	Control inputs	V _{CC} = 3.45 V,	$V_I = V_{CC}$ or GND		/C7	±5			±5	μΑ
	B port	V _{CC} = 3.45 V,	$V_I = V_{TT}$ or GND	50)	±5			±5	
l _{off}	A port	$V_{CC} = 0$, V_I or $V_O = 0$ to	3.45 V	2		100			100	μΑ
		Voc - 2.15 V	V _I = 0.8 V	75			75			
I _I (hold)	A port	V _{CC} = 3.15 V	V _I = 2 V	-75			-75			μΑ
		$V_{CC} = 3.45 V^{\ddagger}$,	V _I = 0.8 V to 2 V			±500			±500	
lozh	B port	V _{CC} = 3.45 V,	V _O = 1.5 V			10			10	μΑ
I _{OZ} §	A port	$V_{CC} = 3.45 \text{ V},$	$V_O = V_{CC}$ or GND			±10			±10	μΑ
Icc	A or B port	$V_{CC} = 3.45 \text{ V}, I_{O} = 0,$	$V_I = V_{CC}$ or GND			60			60	mA
ΔI _{CC} ¶	A port or control inputs	V _{CC} = 3.45 V, A port or control inputs at One input at V _{CC} – 0.6 V				500			500	μА
Ci	Control inputs	V _I = 3.15 V or 0			3			3		pF
C:	A port	V _O = 3.15 V or 0			10			10		nE.
C _{io}	B port	Per IEEE 1194.1			8.5			8.5		pF

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. ‡ This is the bus-hold maximum dynamic current required to switch the input from one state to another.

 $[\]mbox{\ensuremath{\,\$}}\mbox{ For I/O ports, the parameter I}_{\mbox{\ensuremath{\,OZ}}\mbox{\ensuremath{\,\hbox{}}}\mbox{\ensuremath{\,\{}}}\mbox{\ensurema$

[¶] This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

SN54GTL16622, SN74GTL16622 18-BIT LVTTL-TO-GTL/GTL+ TRANSCEIVERS

SCES049C - AUGUST 1995 - REVISED OCTOBER 1996

timing requirements over recommended ranges of supply voltage and operating free-air temperature for GTL (unless otherwise noted) \dagger

			SN54GTI	_16622	SN74GTL	16622	UNIT
			MIN	MAX	MIN	MAX	UNIT
fclock	Clock frequency		0	200	0	200	MHz
t _W	Pulse duration, CLK high or low		2.5	4	2.5		ns
	Setup time	Data before CLK↑	3.1	15.41	3		20
t _{su}	Setup time	CE before CLK↑	2.8	71.	2.7		ns
4.	Hold time	Data after CLK↑	0.7		0.6		no
th	noid time	CE after CLK↑	0.4		0.3		ns

[†] These parameters are warranted but not production tested.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature for GTL (see Figure 1) $\!^\dagger$

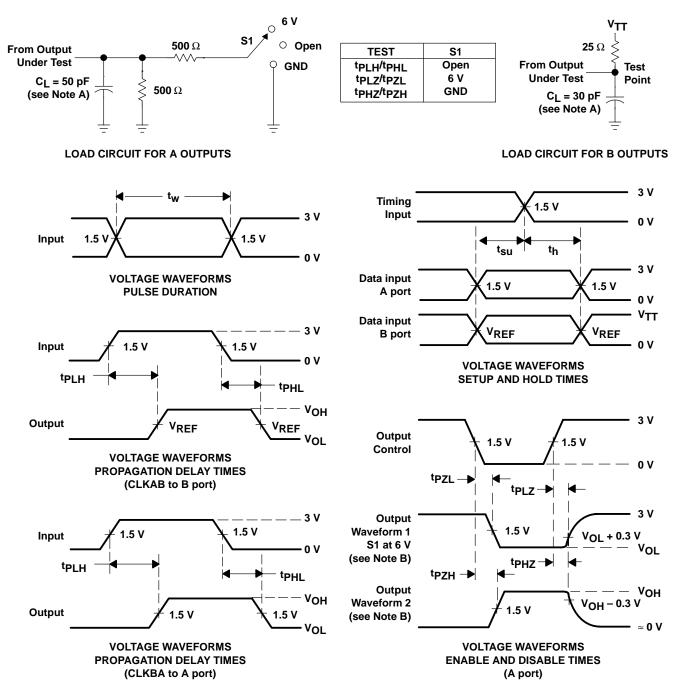
PARAMETER	FROM	то	SNS	4GTL16	622	SN7	4GTL16	622	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
f _{max}			200			200			MHz
^t PLH	CLKAB	В	2.7		6.5	2.8	4.3	6.1	ns
^t PHL	CLINAD	В	1.9		6.2	2	3.6	5.5	115
^t PLH		В	2.5	4	6.4	2.6	4.2	6	ns
t _{PHL}	OEAB	ט	1.6	KEL	5.8	1.7	3.1	5.1	110
Slew rate	Both tra	nsitions		0.5			0.5		V/ns
t _r	Transition time, B or	utputs (0.6 V to 1 V)	0.5	20	2.6	0.6	1.2	2.5	ns
t _f	Transition time, B or	utputs (1 V to 0.6 V)	0.3	?	2.3	0.4	0.8	2	ns
tplH	CLKBA	Δ.	2.1		5.6	2.2	3.7	5.3	20
t _{PHL}	CLNBA	A	2.2		5.6	2.3	3.8	5.2	ns
t _{en}	<u> </u>	Δ.	1.7		5.4	1.8	3.3	5	no
^t dis	OEBA	А	2.2		6.2	2.4	4.1	5.7	ns

[†]These parameters are warranted but not production tested.

[‡] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

SCES049C - AUGUST 1995 - REVISED OCTOBER 1996

timing requirements over recommended ranges of supply voltage and operating free-air temperature for GTL+ (unless otherwise noted)


			SN54GTI	L16622	SN74GTL	16622	UNIT
			MIN	MAX	MIN	MAX	UNIT
fclock	Clock frequency		0	200	0	200	MHz
t _W	Pulse duration, CLK high or low		2.5	4	2.5		ns
Ţ.	Setup time	Data before CLK↑	2.8	25.41	2.5		20
t _{su}	Setup time	CE before CLK↑	2.7	71.	2.6		ns
4.	Hold time	Data after CLK↑	0.6		0.5		no
^t h	noid time	CE after CLK↑	0.2		0.1		ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature for GTL+ (see Figure 1)

DADAMETED	FROM	то	SN5	4GTL16	622	SN7	4GTL16	622	LINUT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT
f _{max}			200			200			MHz
^t PLH	CLKAB	В	2.8		6.6	2.9	4.2	6.1	ns
tPHL	CLNAB	Ь	2		6.6	2.1	3.7	5.7	115
^t PLH	OFAR	В	2.6		6.4	2.7	4.1	5.9	no
^t PHL	OEAB	ט	1.7	KE	6.1	1.8	3.3	5.3	ns
Slew rate	Both tra	nsitions		0.5			0.5		V/ns
t _r	Transition time, B ou	tputs (0.6 V to 1.3 V)	0.9	, , , ,	3.1	1	1.6	3	ns
t _f	Transition time, B ou	tputs (1.3 V to 0.6 V)	0.6	2	4.3	0.7	1.4	3.3	ns
^t PLH	CLKBA	Α	2.1		5.6	2.2	3.7	5.3	no
^t PHL	CLNDA		2.2		5.6	2.3	3.8	5.2	ns
^t en	OFPA	А	1.6		5.4	1.7	3.2	5	no
t _{dis}	OEBA	A	2.2		6.2	2.4	4.1	5.7	ns

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2.5 \text{ ns.}$
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated