SN74ALVCH16282 18-BIT TO 36-BIT REGISTERED BUS EXCHANGER WITH 3-STATE OUTPUTS

SCES036A - JULY 1995 - REVISED AUGUST 1996

- Member of the Texas Instruments
 Widebus™ Family
- EPIC™ (Enhanced-Performance Implanted CMOS) Sub-Micron Process
- ESD Protection Exceeds 2000 V Per MIL-STD883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-up Performance Exceeds 250 mA Per JEDEC Standard JESD-17
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Packaged in Thin Shrink Small-Outline Package

description

The SN74ALVCH16282 is an 18-bit to 36-bit registered bus exchanger designed for 2.3-V to 3.6-V V_{CC} operation. This part is intended for use in applications where data must be transferred from a narrow high-speed bus to a wide lower-frequency bus. It is designed specifically for low-voltage (3.3-V) V_{CC} operation.

The device provides synchronous data exchange between the two ports. Data is stored in the internal registers on the low-to-high transition of the CLK input. For data transfer in the B-to-A direction, SEL selects 1B or 2B data for the A outputs.

For data transfer in the A-to-B direction, a two-stage pipeline is provided in the 1B path, with a single storage register in the 2B path. Data flow is controlled by the active-low output enable (\overline{OE}) and the DIR input. The DIR control pin is registered to synchronize the bus direction changes with the clock.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74ALVCH16282 is characterized for operation from –40°C to 85°C.

DBB PACKAGE (TOP VIEW)

V _{CC}	1	O	80]v _{cc}
GND	2		79	GND
2B9	3			B10
1B9				2B10
2B8			76	∏1B11
GND			75	GND
1B8	7		74	2B11
2B7	8		73]1B12
1B7	9		72	2B12
V_{CC}	10		71] v _{cc}
2B6	11		70] 1B13
1B6				2B13
2B5			68] 1B14
1B5	14		67	2B14
GND			66	GND
2B4	16		65] 1B15
1B4	17		64	2B15
2B3 1B3	18		63	∐1B16
1B3	19		62	2B16
V _{CC}	20		61] v _{cc}
GND	21		60	GND
2B2	22		59] 1B17
1B2	23			B2B17
2B1	24		57] 1B18
1B1 V _{CC}	25		56	2B18
V _{CC}	26		55] v _{cc}
A1	27		54] A18
A2	28		53	A17
A3	29		52	A16
GND	30		51	GND
A4	31		50] A15
A5	32		49] A14
A6	33		48	A13
V_{CC}	34		47	Vcc
	35		46	A12
A8	36		45	A11
A9 GND	37		44	A10
GND	38		43] GND
CLK	39		42] OE
SEL	40		41	DIR
	_			I

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

SCES036A - JULY 1995 - REVISED AUGUST 1996

FUNCTION TABLES

A-TO-B STORAGE ($\overline{OE} = L$, DIR = H)

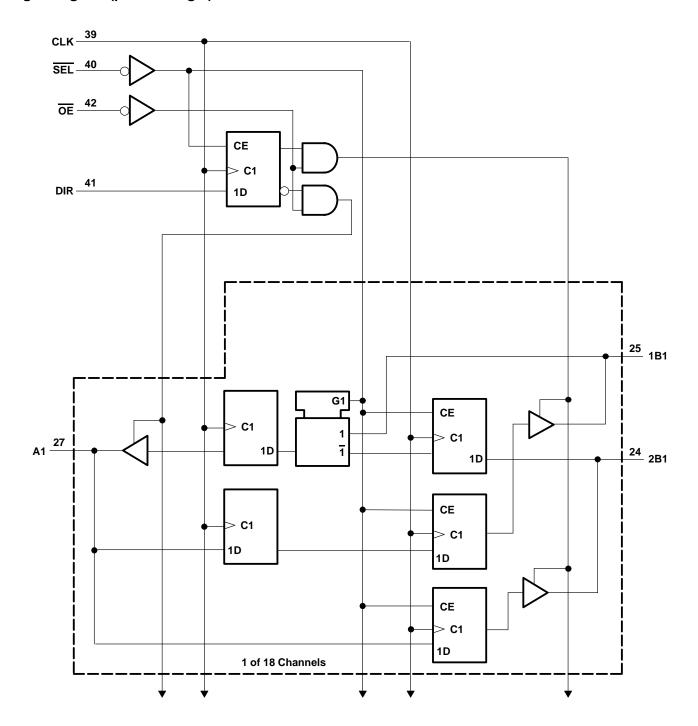
	INPUTS	OUTPUTS			
SEL	CLK	Α	1B	2B	
Н	Х	Х	1B ₀ †	2B ₀ †	
L	\uparrow	L	L‡	X	
L	\uparrow	Н	н‡	Χ	

[†] Output level before the indicated steady-state input conditions are established

B-TO-A STORAGE ($\overline{OE} = L$, DIR = L)

	INPUTS				
CLK	SEL	1B	2B	Α	
1	Н	X	L	L§	
1	Н	X	Н	Н§	
1	L	L	Χ	L	
1	L	Н	Χ	Н	

[§] Two clock edges are needed to propagate the data. The data is loaded in the first register when SEL is low and propagates to the second register when SEL is high.


OUTPUT ENABLE

	INPUTS	OUTPUTS			
CLK	OE	DIR	Α	1B, 2B	
1	Н	Х	Z	Z	
1	L	L	Z	Active	
1	L	Н	Active	Z	

[‡]Two CLK edges are needed to propagate the data.

logic diagram (positive logic)

SN74ALVCH16282 18-BIT TO 36-BIT REGISTERED BUS EXCHANGER WITH 3-STATE OUTPUTS

SCES036A - JULY 1995 - REVISED AUGUST 1996

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	
Input voltage range, V _I : Except I/O ports (see Note 1)	
I/O ports (see Notes 1 and 2)	0.5 V to V _{CC} + 0.5 V
Output voltage range, V _O (see Notes 1 and 2)	0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	±50 mA
Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$	±50 mA
Continuous current through each V _{CC} or GND	±100 mA
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 3)	0.84 W
Storage temperature range, T _{stg}	—65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - 2. This value is limited to 4.6 V maximum.
 - 3. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the *Package Thermal Considerations* application note in the *ABT Advanced BiCMOS Technology Data Book*.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
Vсс	Supply voltage		2.3	3.6	V
V	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		1.7		V
VIH	High-level input voltage	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2		V
V	Low lovel input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V
VIL	Low-level input voltage $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$			0.8	V
VI	Input voltage				V
۷o	Output voltage		0	VCC	V
	V _{CC} =			-12	
IОН	High-level output current	$V_{CC} = 2.7 \text{ V}$		-12	mA
		$V_{CC} = 3 V$		-24	
		$V_{CC} = 2.3 V$		12	
lOL	Low-level output current	$V_{CC} = 2.7 \text{ V}$		12	mA
	V _{CC} = 3 V			24	
Δt/Δν	Input transition rise or fall rate		0	10	ns/V
T_A	Operating free-air temperature		-40	85	°C

NOTE 4: Unused control inputs must be held high or low to prevent them from floating.

SCES036A - JULY 1995 - REVISED AUGUST 1996

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PAI	RAMETER	TEST CO	ONDITIONS	VCC	MIN	TYP [†]	MAX	UNIT
		I _{OH} = -100 μA		2.3 V to 3.6 V	V _{CC} -0	.2		
		$I_{OH} = -6 \text{ mA},$	V _{IH} = 1.7 V	2.3 V	2			
$VOH \begin{tabular}{ll} IOH = -6 mA, \\ IOH = -12 mA \\ \hline IOH = -24 mA, \\ IOL = 100 \ \mu A \\ \hline IOL = 6 mA, \\ IOL = 6 mA, \\ \hline IOL = 12 mA \\ \hline IOL = 24 mA, \\ \hline IOL = 24 mA, \\ \hline IOL = 12 mA \\ \hline IOL = 24 mA, \\ \hline IOL = 12 mA $		V _{IH} = 1.7 V	2.3 V	1.7			٧	
VOH		I _{OH} = -12 mA	V _{IH} = 2 V	2.7 V	2.2			V
			V _{IH} = 2 V	3 V	2.4			
		$I_{OH} = -24 \text{ mA},$	V _{IH} = 2 V	3 V	2			
		I _{OL} = 100 μA		2.3 V to 3.6 V			0.2	
		$I_{OL} = 6 \text{ mA},$	V _{IL} = 0.7 V	2.3 V			0.4	
V _{OL}	lo: - 12 m/	V _{IL} = 0.7 V	2.3 V			0.7	V	
		IOL = 12 IIIA	V _{IL} = 0.8 V	2.7 V			0.4	
I.		I _{OL} = 24 mA,	V _{IL} = 0.8 V			0.55		
lį		$V_I = V_{CC}$ or GND		3.6 V			±5	μΑ
		V _I = 0.7 V	ı = 0.7 V		45			
		V _I = 1.7 V		2.3 V	-45			
I _{I(hold)}		V _I = 0.8 V		3 V	75			μΑ
		V _I = 2 V		3 V	-75			
		$V_{I} = 0 \text{ to } 3.6 \text{ V}^{\ddagger}$		3.6 V			±500	
I _{OZ} §		$V_O = V_{CC}$ or GND		3.6 V			±10	μΑ
		$V_I = V_{CC}$ or GND,	I _O = 0	3.6 V			40	μΑ
Δlcc		One input at V _{CC} – 0.6 V,	Other inputs at V _{CC} or GND	3 V to 3.6 V			750	μΑ
	Control inputs	$V_I = V_{CC}$ or GND		3.3 V		4		pF
Cio	A or B ports	$V_O = V_{CC}$ or GND		3.3 V		8.5		pF

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 and 2)

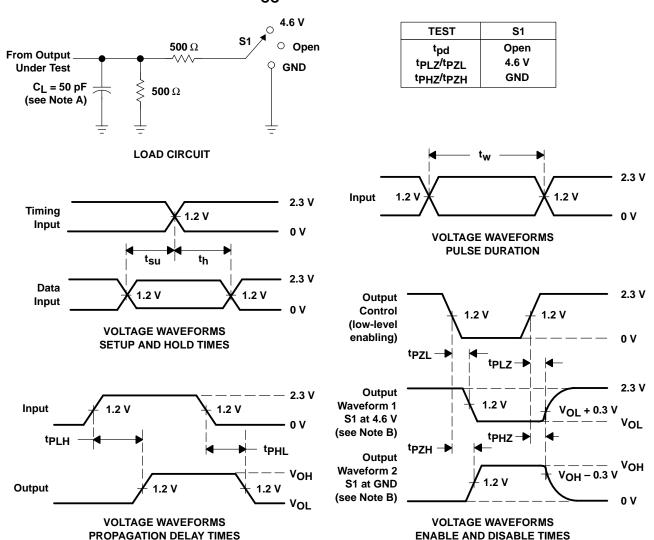
				V _{CC} = 2.5 V ± 0.2 V		2.7 V	V _{CC} = 3.3 V ± 0.3 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
f _{clock}	Clock frequency			150		150		150	MHz
t _W	Pulse duration, CLK high or low		3.3		3.3		3.3		ns
		A data before CLK↑	2.4		2.3		2		ns
 .	Setup time	B data before CLK↑	2.2		2.2		1.8		
^t su		DIR before CLK↑	2.2		2.1		1.7		
t _{su} Se		SEL before CLK↑	2		2		1.8		
		A data after CLK↑	0.5		0.5		0.7		
_	Hold time	B data after CLK↑	0.5		0.5		0.6		ns
t _h	noid time	DIR after CLK↑	0.5		0.5		0.5		
		SEL after CLK↑	0.7		0.7		0.8		

[†] Typical values are measured at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. ‡ This is the bus-hold maximum dynamic current required to switch the input from one state to another.

[§] For I/O ports, the parameter IOZ includes the input leakage current.

SN74ALVCH16282 18-BIT TO 36-BIT REGISTERED BUS EXCHANGER WITH 3-STATE OUTPUTS SCES036A – JULY 1995 – REVISED AUGUST 1996

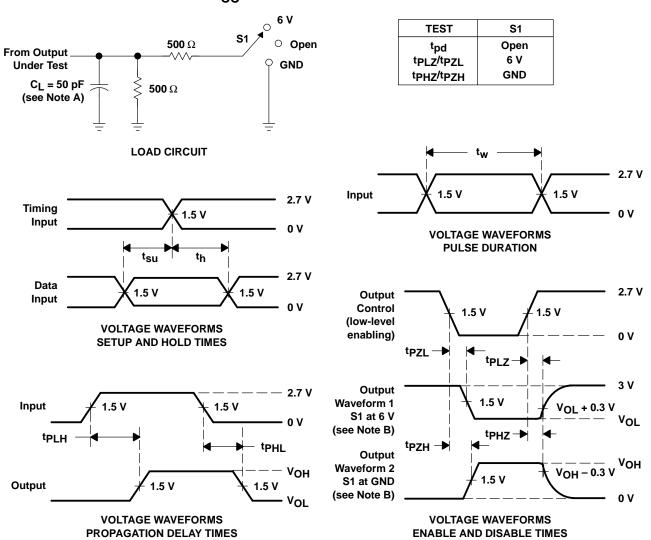
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, (unless otherwise noted) (see Figures 1 and 2)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
	(1001701)	(0011 01)	MIN	MAX	MIN	MAX	MIN	MAX	
f _{max}			150		150		150		MHz
	CLK	Α	1.4	6.7		5.5	1.4	5	ns
^t pd	CLK	В	1.7	6.9		5.7	1.6	5.3	
+	ŌE	Α	1.4	7.4		6.3	1.2	5.7	nc
^t en	ŌE	В	2.4	9.2		8.1	2.3	7.4	ns
.	OE .	Α	2.2	7.2		5.6	1.8	5.7	nc
^t dis	ŌĒ	В	2.8	8.1		6.4	2.3	6.4	ns

operating characteristics, $T_A = 25^{\circ}C$

PARAMETER			TEST CONDITIONS		V _{CC} = 2.5 V ± 0.2 V	V _{CC} = 3.3 V ± 0.3 V	UNIT
					TYP	TYP	
<u> </u>	Dower dissination consistence	Outputs enabled	C. – 0	f = 10 MHz	282	310	pF
Cpd	C _{pd} Power dissipation capacitance	Outputs disabled	$C_L = 0$, $f = 10 Mi$	I = 10 IVITZ	208	228	ρг

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.5 V \pm 0.2 V



NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tplH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7 V AND 3.3 V \pm 0.3 V

NOTES: A. C₁ includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated