SCES025A - JULY 1995 - REVISED JULY 1996

● Member of the Texas Instruments	DGG OR DL PACKAGE
<i>Widebus</i> ™ Family	(TOP VIEW)
 EPIC ™ (Enhanced-Performance Implanted CMOS) Submicron Process 	
 Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors 	1 EAB 2 55 1 1 EBA 1 CEAB 3 54 1 CEBA GND 4 53 GND 1 A1 5 52 1 B1
 ESD Protection Exceeds 2000 V Per	1A2 6 51 1B2
MIL-STD-883C, Method 3015; Exceeds	V _{CC} 7 50 V _{CC}
200 V Using Machine Model (C = 200 pF,	1A3 8 49 1B3
R = 0)	1A4 9 48 1B4
 Latch-Up Performance Exceeds 250 mA	1A5 [10 47] 1B5
Per JEDEC Standard JESD-17	GND [11 46] GND
 Package Options Include Plastic 300-mil	1A6 [12 45] 1B6
Shrink Small-Outline (DL) and Thin Shrink	1A7 [13 44] 1B7
Small-Outline (DGG) Packages	1A8 [14 43] 1B8
description	2A1 0 15 42 2B1 2A2 0 16 41 2B2
This 16-bit registered transceiver is designed for 2.3-V to 3.6-V V _{CC} operation.	2A3 0 17 40 2B3 GND 0 18 39 0 GND 2A4 0 19 38 2B4
The SN74ALVCH16543 can be used as two 8-bit transceivers or one 16-bit transceiver. Separate	2A4 [19 36] 2B4 2A5 [20 37] 2B5 2A6 [21 36] 2B6
latch-enable (LEAB or LEBA) and output-enable	V _{CC} [22 35] V _{CC}
(OEAB or OEBA) inputs are provided for each	2A7 [23 34] 2B7
register to permit independent control in either	2A8 [24 33] 2B8
direction of data flow.	GND [25 32] GND

The A-to-B enable (\overline{CEAB}) input must be low to enter data from A or to output data from B. If \overline{CEAB} is low and \overline{LEAB} is low, the A-to-B latches are transparent; a subsequent low-to-high transition of \overline{LEAB} puts the A latches in the storage mode.

With CEAB and OEAB both low, the 3-state B outputs are active and reflect the data present at the output of the A latches. Data flow from B to A is similar, but requires using CEBA, LEBA, and OEBA.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74ALVCH16543 is available in TI's shrink small-outline (DL) and thin shrink small-outline (DGG) packages, which provide twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN74ALVCH16543 is characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1996, Texas Instruments Incorporated

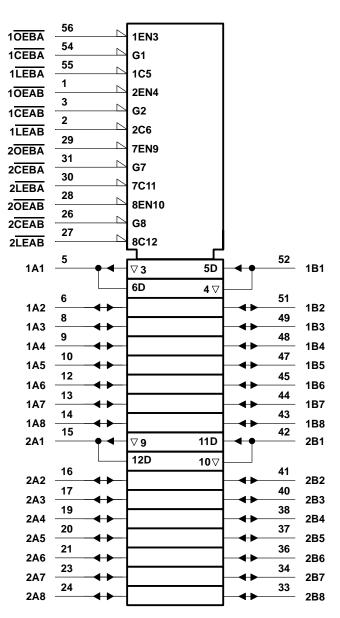
31 2CEBA

30 2LEBA

20EBA

29

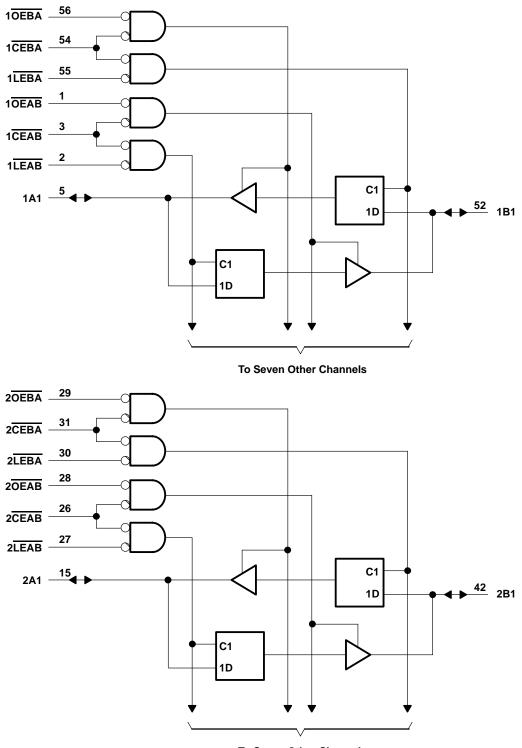
2LEAB


20EAB

27

28

SCES025A - JULY 1995 - REVISED JULY 1996


logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

SCES025A - JULY 1995 - REVISED JULY 1996

FUNCTION TABLET

(each o-bit section)								
INPUTS								
LEAB	OEAB	Α	В					
Х	Х	Х	Z					
Х	Н	Х	Z					
Н	L	Х	в ₀ ‡					
L	L	L	L					
L	L	Н	Н					
	X X	LEAB OEAB X X X H	LEABOEABAXXXXHXHLXLLL					

[†] A-to-B data flow is shown; B-to-A flow control is the

same except that it uses \overline{CEBA} , \overline{LEBA} , and \overline{OEBA} .

[‡]Output level before the indicated steady-state input

conditions were established

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)§

Supply voltage range, V_{CC} Input voltage range, VI: Except I/O ports (see Note 1) I/O ports (see Notes 1 and 2) Output voltage range, V_O (see Notes 1 and 2) Input clamp current, I_{IK} ($V_I < 0$) Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$) Continuous output current, I_O ($V_O = 0$ to V_{CC})	$\begin{array}{c} -0.5 \ \text{V to } 4.6 \ \text{V} \\ -0.5 \ \text{V to } \ \text{V}_{CC} + 0.5 \ \text{V} \\ -0.5 \ \text{V to } \ \text{V}_{CC} + 0.5 \ \text{V} \\ -0.5 \ \text{V to } \ \text{V}_{CC} + 0.5 \ \text{V} \\ -50 \ \text{mA} \\ \pm 50 \ \text{mA} \\ \end{array}$
Continuous current through each V _{CC} or GND	±100 mA
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 3): DO	GG package 1 W _ package 1.4 W
Storage temperature range, T _{stg}	

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This value is limited to 4.6 V maximum.

3. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the *Package Thermal Considerations* application note in the *ABT Advanced BiCMOS Technology Data Book*.

SN74ALVCH16543 **16-BIT REGISTERED TRANSCEIVER** WITH 3-STATE OUTPUTS SCES025A – JULY 1995 – REVISED JULY 1996

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
VCC	Supply voltage		2.3	3.6	V
V		V_{CC} = 2.3 V to 2.7 V	1.7		V
VIH	High-level input voltage	V_{CC} = 2.7 V to 3.6 V	2		v
V		V_{CC} = 2.3 V to 2.7 V		0.7	V
VIL		V_{CC} = 2.7 V to 3.6 V		0.8	v
VI	Input voltage		0	VCC	V
VO	Output voltage		0	VCC	V
		V _{CC} = 2.3 V		-12	
ЮН	High-level output current	$V_{CC} = 2.7 V$		–12 mA	
		$V_{CC} = 3 V$		-24	
		V _{CC} = 2.3 V		12	
IOL	Low-level output current	V _{CC} = 2.7 V		12	mA
		V _{CC} = 3 V		24	
$\Delta t/\Delta v$	Input transition rise or fall rate		0	10	ns/V
TA	Operating free-air temperature		-40	85	°C

NOTE 4: Unused control inputs must be held high or low to prevent them from floating.

SCES025A - JULY 1995 - REVISED JULY 1996

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAM	METER	TEST CO	ONDITIONS	v _{cc} †	MIN	TYP‡	MAX	UNIT	
		I _{OH} = –100 μA		MIN to MAX	V _{CC} -0	.2			
		I _{OH} = -6 mA,	V _{IH} = 1.7 V	2.3 V	2				
\/			V _{IH} = 1.7 V	2.3 V	1.7			v	
Vон		I _{OH} = – 12 mA	V _{IH} = 2 V	2.7 V	2.2			v	
			V _{IH} = 2 V	3 V	2.4				
		I _{OH} = -24 mA,	V _{IH} = 2 V	3 V	2				
		I _{OL} = 100 μA		MIN to MAX			0.2		
		I _{OL} = 6 mA,	V _{IL} = 0.7 V	2.3 V			0.4		
V _{OL}		10	V _{IL} = 0.7 V	2.3 V			0.7	V	
		I _{OL} = 12 mA	V _{IL} = 0.8 V	2.7 V			0.4		
		I _{OL} = 24 mA,	V _{IL} = 0.8 V	3 V			0.55		
lj		V _I = V _{CC} or GND		3.6 V			±5	μA	
		V _I = 0.7 V		0.014	45			μΑ	
		VI = 1.7 V		2.3 V	-45				
ll(hold)		V _I = 0.8 V		0.14	75				
()		V ₁ = 2 V		3 V	-75				
		V _I = 0 to 3.6 V§		3.6 V			±500		
loz¶		$V_{O} = V_{CC}$ or GND		3.6 V			±10	μA	
ICC		$V_{I} = V_{CC}$ or GND,	IO = 0	3.6 V			40	μA	
∆ICC		One input at V _{CC} – 0.6 V,	Other inputs at V _{CC} or GND	3 V to 3.6 V			750	μA	
î	ontrol inputs	V _I = V _{CC} or GND		3.3 V		3.5		pF	
	or B ports	$V_{O} = V_{CC}$ or GND		3.3 V		8.5		pF	

[†] For conditions shown as MIN or MAX, use the appropriate values under recommended operating conditions.

[‡] Typical values are measured at V_{CC} = 3.3 V, T_A = 25° C.

§ This is the bus-hold maximum dynamic current required to switch the input from one state to another.

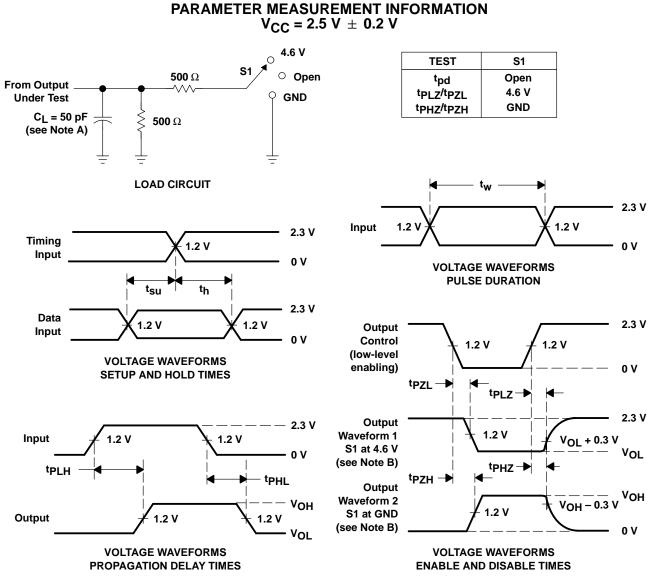
¶ For I/O ports, the parameter I_{OZ} includes the input leakage current.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

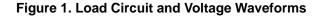
			$V_{CC} = 2.5 V \pm 0.2 V$		V _{CC} =	2.7 V	= ۷ _{CC} ± 0.3	3.3 V 3 V	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
tw	Pulse duration, $\overline{\text{LE}}$ or $\overline{\text{CE}}$ low		3.3		3.3		3.3		ns
t _{su}	Setup time	Data before \overline{LE}^{\uparrow} or \overline{CE}^{\uparrow}	1.2		1.5		1.2		ns
t _h	Hold time	Data after \overline{LE}^{\uparrow} or \overline{CE}^{\uparrow}	1.2		0.8		1.3		ns

SN74ALVCH16543 **16-BIT REGISTERED TRANSCEIVER** WITH 3-STATE OUTPUTS SCES025A – JULY 1995 – REVISED JULY 1996

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 and 2)


PARAMETER	FROM TO (INPUT) (OUTPUT)	-	V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
		(001P01)	MIN	MAX	MIN	MAX	MIN	MAX	
÷.	A or B	B or A	1	5.7		4.8	1	4.3	
^t pd	LE	A or B	1.1	7.1		6.2	1.1	5	ns
t _{en}	CE	A or B	1	7.7		6.9	1	5.6	ns
^t dis	CE	A or B	2	6.3		6.2	1.5	5.1	ns
ten	OE	A or B	1	7.3		6.3	1	5.3	ns
^t dis	OE	A or B	1.6	5.9		4.8	1.1	4.6	ns

operating characteristics, $T_A = 25^{\circ}C$


PARAMETER			TEST CONDITIONS	V _{CC} = 2.5 V ± 0.2 V	V _{CC} = 3.3 V ± 0.3 V	UNIT
				TYP	TYP	
		Outputs enabled	$C_{1} = 50 \text{ pc}$ f = 10 MHz	54	64	рF
Cpd	C _{pd} Power dissipation capacitance	Outputs disabled	$C_{L} = 50 \text{ pF}, \text{ f} = 10 \text{ MHz}$	6	7	рг

SCES025A - JULY 1995 - REVISED JULY 1996

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tp71 and tp7H are the same as ten.
 - G. tpLH and tpHL are the same as tpd.

SN74ALVCH16543 16-BIT REGISTERED TRANSCEIVER WITH 3-STATE OUTPUTS SCES025A – JULY 1995 – REVISED JULY 1996

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7 V AND 3.3 V \pm 0.3 V 6 V 0 TEST **S**1 **S1 500** Ω O Open tpd Open From Output 6 V tPLZ/tPZL Under Test 0 GND GND tPHZ/tPZH C_L = 50 pF **500** Ω (see Note A) LOAD CIRCUIT tw 2.7 V 1.5 V Input 1.5 V 2.7 V Timing 1.5 V 0 V Input 0 V **VOLTAGE WAVEFORMS** PULSE DURATION t_{su} th 2.7 V Data 1.5 V 2.7 V 1.5 V Output Input 0 V Control 1.5 V 1.5 V (low-level **VOLTAGE WAVEFORMS** enabling) 0 V SETUP AND HOLD TIMES ^tPZL **t**PLZ 3 V Output 2.7 V Waveform 1 1.5 V Input 1.5 V 1.5 V V_{OL} + 0.3 V S1 at 6 V VOL 0 V (see Note B) tPHZ -^tPLH tPZH 🔶 ^tPHL Output Waveform 2 ۷он V_{OH} - 0.3 V Vон 1.5 V S1 at GND Output 1.5 V 1.5 V (see Note B) 0 V Voi **VOLTAGE WAVEFORMS VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES PROPAGATION DELAY TIMES**

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. tPLH and tPHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated