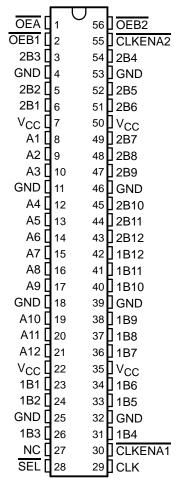
- **Member of the Texas Instruments** Widebus™ Family
- **EPIC** ™ (Enhanced-Performance Implanted **CMOS) Submicron Process**
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per **JESD 17**
- Bus Hold on Data Inputs Eliminates the **Need for External Pullup/Pulldown**
- Package Options Include Plastic Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages


description

This 12-bit to 24-bit registered bus transceiver is designed for 2.3-V to 3.6-V V_{CC} operation.

The SN74ALVCH16269 is used in applications where two separate ports must be multiplexed onto, or demultiplexed from, a single port. The device is particularly suitable as an interface between synchronous DRAMs and high-speed microprocessors.

Data is stored in the internal B-port registers on the low-to-high transition of the clock (CLK) input when the appropriate clock-enable (CLKENA) inputs are low. Proper control of these inputs allows two sequential 12-bit words to be presented as a 24-bit word on the B port. For data transfer in the B-to-A direction, a single storage

DGG OR DL PACKAGE (TOP VIEW)

NC - No internal connection

register is provided. The select (SEL) line selects 1B or 2B data for the A outputs. The register on the A output permits the fastest possible data transfer, thus extending the period during which the data is valid on the bus. The control terminals are registered so that all transactions are synchronous with CLK. Data flow is controlled by the active-low output enables (\overline{OEA} , $\overline{OEB1}$, $\overline{OEB2}$).

To ensure the high-impedance state during power up or power down, a clock pulse should be applied as soon as possible and $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. Due to OE being routed through a register, the active state of the outputs cannot be determined prior to the arrival of the first clock pulse.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

SN74ALVCH16269 12-BIT TO 24-BIT REGISTERED BUS TRANSCEIVER WITH 3-STATE OUTPUTS

SCES019C - JULY 1995 - REVISED JULY 1997

description (continued)

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74ALVCH16269 is characterized for operation from -40°C to 85°C.

Function Tables

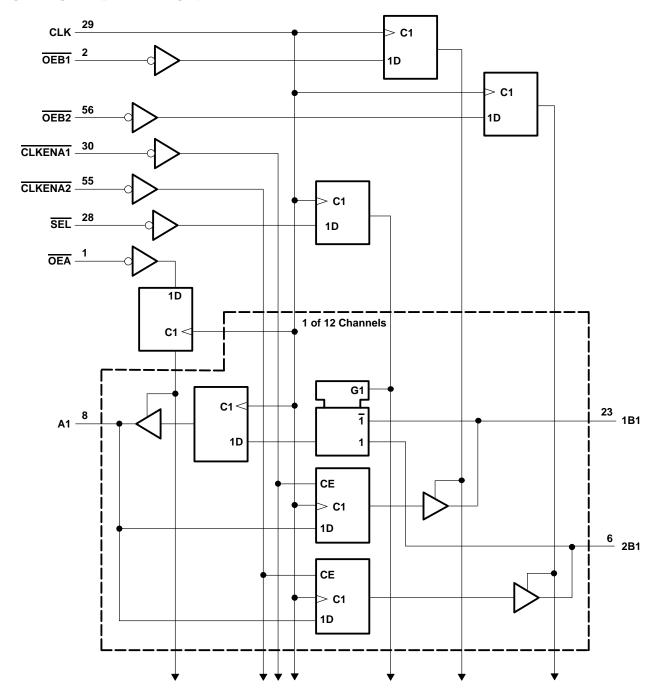
OUTPUT ENABLE

	INPUTS	OUTPUTS			
CLK	OEA	OEB	Α	1B, 2B	
1	Н	Н	Z	Z	
\uparrow	Н	L	Z	Active	
1	L	Н	Active	Z	
1	L	L	Active	Active	

A-TO-B STORAGE ($\overline{OEB} = L$)

	INPUTS			OUTI	PUTS
CLKENA1	CLKENA2	CLK	Α	1B	2B
Н	Н	Χ	Χ	1B ₀ †	2B ₀ †
L	Χ	\uparrow	L	L	Х
L	Χ	\uparrow	Н	Н	Х
Х	L	\uparrow	L	Х	L
Х	L	\uparrow	Н	Х	Н

[†] Output level before the indicated steady-state input conditions were established


B-TO-A STORAGE ($\overline{OEA} = L$)

	INP	JTS		OUTPUT
CLK	SEL	1B	2B	Α
Х	Н	Χ	Χ	A ₀ † A ₀ †
Х	L	Χ	X	A ₀ †
\uparrow	Н	L	X	L
\uparrow	Н	Н	X	Н
\uparrow	L	Χ	L	L
\uparrow	L	Χ	Н	Н

[†] Output level before the indicated steady-state input conditions were established

logic diagram (positive logic)

SN74ALVCH16269 12-BIT TO 24-BIT REGISTERED BUS TRANSCEIVER WITH 3-STATE OUTPUTS

SCES019C - JULY 1995 - REVISED JULY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC}	
Input voltage range, V _I : Except I/O ports (see Note 1)	
I/O ports (see Notes 1 and 2)	0.5 V to V _{CC} + 0.5 V
Output voltage range, V _O (see Notes 1 and 2)	\sim -0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	±50 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	±50 mA
Continuous current through each V _{CC} or GND	±100 mA
Package thermal impedance, θ _{JA} (see Note 3): DGG package	81°C/W
DL package	
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - 2. This value is limited to 4.6 V maximum.
 - 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
Vcc	Supply voltage		2.3	3.6	V
\/	High lovel input valtage	V _{CC} = 2.7 V to 3.6 V	2		V
VIH	High-level input voltage	V _{CC} = 2.3 V to 2.7 V	1.7		V
\/	Low lovel input voltage	but voltage	T	0.8	V
VIL	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V
٧ _I	Input voltage		0	VCC	V
٧o	Output voltage		0	VCC	V
		V _{CC} = 2.3 V		-12	
loh	High-level output current	V _{CC} = 2.7 V		-12	mA
	H High-level input voltage L Low-level input voltage Input voltage Output voltage High-level output current Low-level output current	V _{CC} = 3 V		-24	
		V _{CC} = 2.3 V		12	
I_{OL}	Low-level output current	V _{CC} = 2.7 V		12	mA
		V _{CC} = 3 V	T	24	
Δt/Δν	Input transition rise or fall rate		0	10	ns/V
T _A	Operating free-air temperature		-40	85	°C

NOTE 4: Unused control inputs must be held high or low to prevent them from floating.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PA	RAMETER	TEST C	ONDITIONS	VCC	MIN	TYP†	MAX	UNIT
		I _{OH} = -100 μA		2.3 V to 3.6 V	V _{CC} -0.2			
		$I_{OH} = -6 \text{ mA},$	V _{IH} = 1.7 V	2.3 V	2			
VOH VOL		V _{IH} = 1.7 V	2.3 V	1.7			\neg	
VOH		I _{OH} = -12 mA	V 2.V	2.7 V	2.2			V
			V _{IH} = 2 V	3 V	2.4			
VOL		$I_{OH} = -24 \text{ mA},$	V _{IH} = 2 V	3 V	2			
		I _{OL} = 100 μA,		2.3 V to 3.6 V			0.4 0.55 ±5 μ.	
V _{OL}	I _{OL} = 6 mA,	V _{IL} = 0.7 V	2.3 V			0.4		
	101	V _{IL} = 0.7 V	2.3 V			0.7	V	
		I _{OL} = 12 mA	V _{IL} = 0.8 V	2.7 V			0.4	
		I _{OL} = 24 mA,	V _{IL} = 0.8 V	3 V			0.55	
Ιį		$V_I = V_{CC}$ or GND		3.6 V			±5	μΑ
		V _I = 0.7 V		2.3 V	45			
		V _I = 1.7 V		2.3 V	-45	-45		
I _{I(hold)}		V _I = 0.8 V		3 V	75			μΑ
		V _I = 2 V		3 V	-75			
		$V_{I} = 0 \text{ to } 3.6 \text{ V}^{\ddagger}$		3.6 V			±500	
loz§		$V_O = V_{CC}$ or GND		3.6 V			±10	μΑ
ICC		$V_I = V_{CC}$ or GND,	IO = 0	3.6 V			40	μΑ
Δlcc		One input at V _{CC} – 0.6 V,	Other inputs at V _{CC} or GND	3 V to 3.6 V			750	μΑ
Ci	Control inputs	V _I = V _{CC} or GND		3.3 V		3.5		pF
C _{io}	A or B ports	$V_O = V_{CC}$ or GND		3.3 V		9		pF

[†] All typical values are measured at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

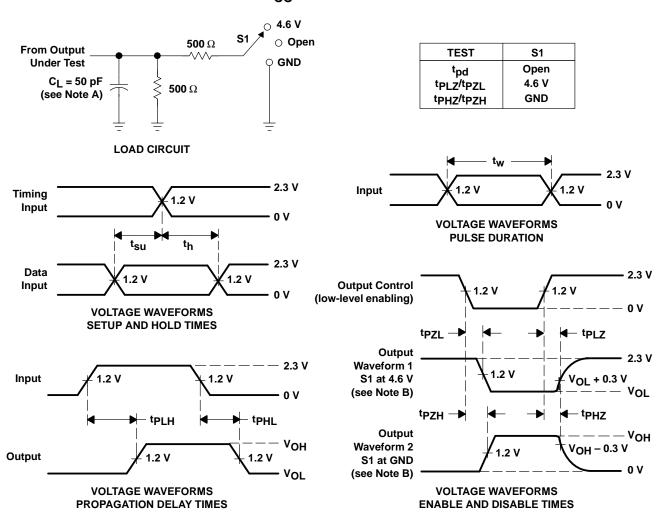
			V _{CC} =		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequency		0	135	0	135	0	135	MHz
t _W	Pulse duration, CLK high or I	ow	3.3		3.3		3.3		ns
	t _{SU} Setup time	A data before CLK↑	2		2		1.7		
		B data before CLK↑	2.2		2.1		1.8		ns
t _{su}		SEL before CLK↑	1.6		1.6		1.3		
		CLKENA1 or CLKENA2 before CLK↑	1		1.2		0.9		
		OE before CLK↑	1.5		1.6		1.3		
		A data after CLK↑	0.7		0.6		0.6		
		B data after CLK↑ 0.7 0.6	0.6		0.6				
th	Hold time	SEL after CLK↑	1.1		0.7		0.7		ns
		CLKENA1 or CLKENA2 after CLK↑	1		0.8		1.1		
		OE after CLK↑	0.8		0.8		0.8		

[‡] This is the bus-hold maximum dynamic current required to switch the input from one state to another.

[§] For I/O ports, the parameter IOZ includes the input leakage current.

SN74ALVCH16269 12-BIT TO 24-BIT REGISTERED BUS TRANSCEIVER WITH 3-STATE OUTPUTS SCES019C – JULY 1995 – REVISED JULY 1997

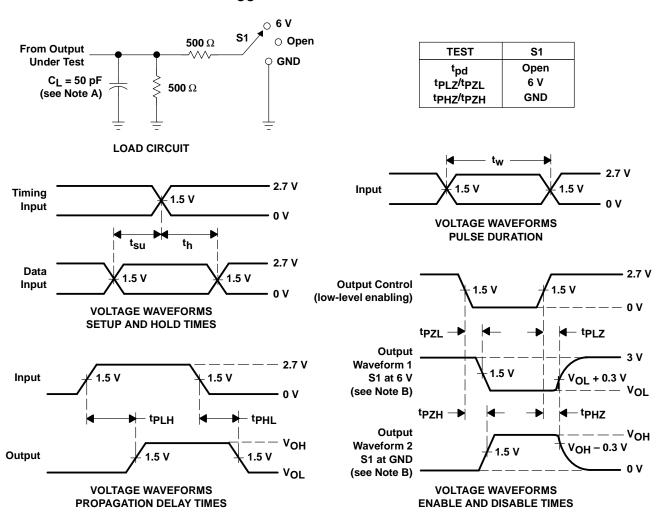
switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figures 1 and 2)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} =	2.5 V 2 V	VCC =	2.7 V	V _{CC} =	3.3 V 3 V	UNIT
	(1111 01)	MIN	MAX	MIN	MAX	MIN	MAX		
f _{max}			135		135		135		MHz
^t pd	CLK	В	1	8.8		7.3	1	6.2	no
		Α	1	7		5.8	1	5	ns
t _{en}	CLK	В	1	8.4		6.7	1	6.1	no
		А	1	8.1		6.2	1	5.9	ns
	0114	В	1.4	8.3		6.9	1	6.1	no
^t dis	CLK	Α	1.5	7.7		6.8	1	5.6	ns

operating characteristics, $T_A = 25^{\circ}C$

PARAMETER			TEST CONDITIONS		V _{CC} = 2.5 V ± 0.2 V	V _{CC} = 3.3 V ± 0.3 V	UNIT
		Outputs enabled	O: 50 = 5	f 40 MI I=	87	120	
C _{pd}	Power dissipation capacitance	Outputs disabled	C _L = 50 pF,	f = 10 MHz	80.5	118	pF

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$



NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2.5 \text{ ns. } t_f \leq 2.5 \text{ ns.}$
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpl 7 and tpH7 are the same as tdis.
- F. tpZL and tpZH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.7 \text{ V}$ AND 3.3 V \pm 0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{O} = 50 Ω , $t_{f} \leq$ 2.5 ns, $t_{f} \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpl 7 and tpH7 are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated