- **Members of the Texas Instruments** Widebus™ Family
- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- **Support Mixed-Mode Signal Operation** (5-V Input and Output Voltages With 3.3-V V_{CC})
- **Support Unregulated Battery Operation** Down to 2.7 V
- **High-Impedance State During Power Up** and Power Down
- **Typical V_{OLP} (Output Ground Bounce)** < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- **ESD Protection Exceeds 2000 V Per** MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 500 mA Per **JESD 17**
- Bus Hold on Data Inputs Eliminates the **Need for External Pullup/Pulldown Resistors**
- Power Off Disables Inputs/Outputs, **Permitting Live Insertion**
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), and Thin Very Small-Outline (DGV) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package **Using 25-mil Center-to-Center Spacings**

SN54LVTH16241 . . . WD PACKAGE SN74LVTH16241 . . . DGG, DGV, OR DL PACKAGE (TOP VIEW)

				1
10E	1	U	48	1 20E
1Y1 [1		47	1A1
1Y2 [1A2
GND [4			GND
1Y3 [44	1A3
1Y4 [6		43	1A4
V _{CC} [7		42] v _{cc}
2Y1 [41] 2A1
2Y2 [9		40] 2A2
GND [10		39	GND
2Y3 [11		38] 2A3
2Y4 [12		37] 2A4
3Y1 [13		36] 3A1
3Y2[14		35] 3A2
GND [15		34	GND
3Y3 [33] 3A3
3Y4 [17		32] 3A4
V _{CC} [18		31] v _{cc}
4Y1 [19		30] 4A1
4Y2 [20		29] 4A2
GND [21		28	GND
4Y3 [22		27] 4A3
4Y4 [26] 4A4
40E	24		25] 30E
	ш			l

description

These 16-bit buffers/drivers are designed specifically for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

The devices can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. The devices provide noninverting outputs and complementary output-enable (OE and OE) inputs.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments Incorporated.

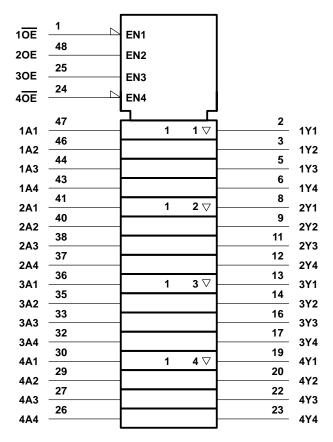
SN54LVTH16241, SN74LVTH16241 3.3-V ABT 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS

SCBS693 - MAY 1997

description (continued)

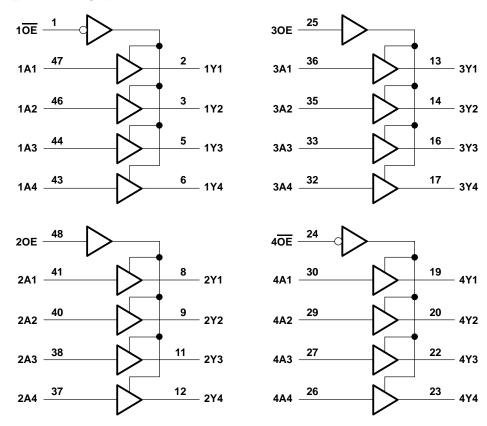
When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, \overline{OE} should be tied to V_{CC} through a pullup resistor and OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.


The SN54LVTH16241 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74LVTH16241 is characterized for operation from –40°C to 85°C.

FUNCTION TABLES

INPU [*]	INPUTS					
10E, 40E	1A, 4A	1Y, 4Y				
L	Н	Н				
L	L	L				
н	Χ	Z				


INPU'	OUTPUTS			
20E, 30E	2A, 3A	2Y, 3Y		
Н	Н	Н		
Н	L	L		
L	Χ	Z		

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC}	–0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high or power-off state, VO (see Note 1) .	–0.5 V to 7 V
Current into any output in the low state, IO: SN54LVTH16241	96 mA
SN74LVTH16241	128 mA
Current into any output in the high state, IO (see Note 2): SN54LVTH16241	48 mA
SN74LVTH16241	64 mA
Input clamp current, $I_{ K }(V_1 < 0)$	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ _{JA} (see Note 3): DGG package	89°C/W
DGV package	93°C/W
DL package	94°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - 2. This current flows only when the output is in the high state and $V_O > V_{CC}$.
 - 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

						SN74LVTH16241		
			MIN	MAX	MIN	MAX	UNIT	
Vcc	Supply voltage	2.7	3.6	2.7	3.6	V		
VIH	High-level input voltage		2	N.	2		V	
V _{IL}	Low-level input voltage		0.8		0.8	V		
VI	Input voltage	40	5.5		5.5	V		
ІОН	High-level output current	6	-24		-32	mA		
loL	Low-level output current			48		64	mA	
Δt/Δν	Input transition rise or fall rate	Outputs enabled	90	10		10	ns/V	
Δt/ΔV _{CC}	Power-up ramp rate		200		200		μs/V	
T _A	Operating free-air temperature	-	– 55	125	-40	85	°C	

NOTE 4: Unused control inputs must be held high or low to prevent them from floating.

SN54LVTH16241, SN74LVTH16241 3.3-V ABT 16-BIT BUFFERS/DRIVERS **WITH 3-STATE OUTPUTS**

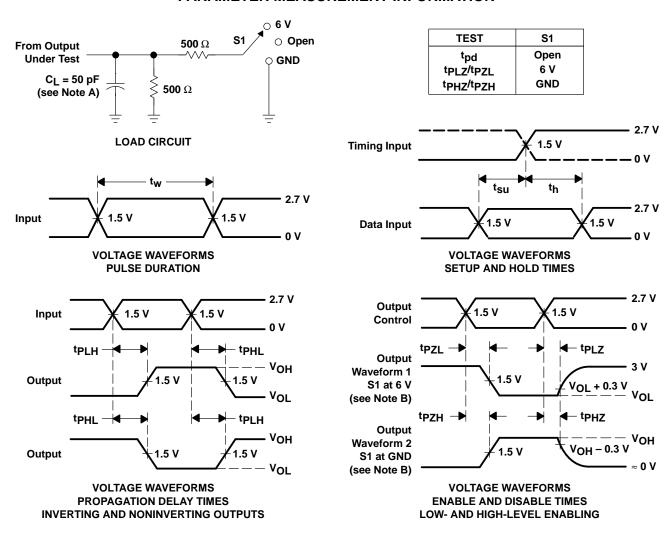
SCBS693 - MAY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54L	_VTH162	241	SN74L	VTH162	41	LINUT
		IEST CON	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT	
V_{IK} $V_{CC} = 2.7$		$V_{CC} = 2.7 \text{ V},$	I _I = -18 mA			-1.2			-1.2	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V},$	I _{OH} = -100 μA	V _{CC} -0.2			V _{CC} -0.2			
V		$V_{CC} = 2.7 \text{ V},$	I _{OH} = -8 mA	2.4			2.4			V
VOH		V _{CC} = 3 V	$I_{OH} = -24 \text{ mA}$	2						V
		ACC = 2 A	$I_{OH} = -32 \text{ mA}$				2			
		Voc - 2.7.V	I _{OL} = 100 μA			0.2			0.2	
		V _{CC} = 2.7 V	I _{OL} = 24 mA			0.5			0.5	
Voi			I _{OL} = 16 mA			0.4			0.4	V
VOL		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	I _{OL} = 32 mA			0.5			0.5	V
		VCC = 3 V	I _{OL} = 48 mA			0.55				
			I _{OL} = 64 mA						0.55	
		$V_{CC} = 0 \text{ or } 3.6 \text{ V},$	V _I = 5.5 V		JA.	10			10	
	Control inputs	$V_{CC} = 3.6 \text{ V},$	$V_I = V_{CC}$ or GND		±1				±1] <u>,</u>
Η		V _{CC} = 3.6 V	VI = VCC		BA	1			1	μΑ
	Data inputs	VCC = 3.6 V	V _I = 0			– 5			- 5	
l _{off}		$V_{CC} = 0$, V_I or $V_O = 0$	//		±100			±100	μΑ	
lia in	Data inputs	V _{CC} = 3 V	V _I = 0.8 V	75			75			μА
l(hold)	Data inputs	ACC = 2 A	V _I = 2 V	9 75			-75			μΑ
lozh		$V_{CC} = 3.6 \text{ V},$	V _O = 3 V			5			5	μΑ
lozL		$V_{CC} = 3.6 \text{ V},$	V _O = 0.5 V			– 5			- 5	μΑ
lozpu‡		$V_{CC} = 0$ to 1.5 V, $V_O = 0$ OE/OE = don't care	0.5 V to 3 V,			±100			±100	μΑ
I _{OZPD} ‡		$V_{CC} = 1.5 \text{ V to } 0, V_{O} = 0$ OE/OE = don't care	0.5 V to 3 V,			±100			±100	μΑ
			Outputs high			0.19		,	0.19	
ICC	$V_{CC} = 3.6 \text{ V, } I_{O} = 0,$	Outputs low			5			5	mA	
		V _I = V _{CC} or GND Outputs disa				0.19			0.19	
Δl _{CC} §		$V_{CC} = 3 \text{ V to } 3.6 \text{ V,}$ One input at $V_{CC} - 0.6$ Other inputs at V_{CC} or				0.2			0.2	mA
Ci		V _I = 3 V or 0			4			4		pF
Со		$V_O = 3 V \text{ or } 0$			9			9		pF

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. ‡ This parameter is warranted but not production tested.

[§] This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.


switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

			SN54LVTH16241				SN74LVTH16241					
PARAMETER	FROM (INPUT)	TO (OUTPUT)		V _{CC} = 3.3 V ± 0.3 V V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V			V _{CC} = 2.7 V		UNIT	
			MIN	MAX	MIN	MAX	MIN	TYP†	MAX	MIN	MAX	
t _{PLH}	А	Y	1.1	3.7	4	4	1.2	2.6	3.5		3.8	ns
^t PHL		'	1.1	3.7	Y	4	1.2	2.2	3.5		3.8	115
^t PZH	OE or OE	~	1.1	4.7	36	5.3	1.2	3.2	4.5		5.1	ns
t _{PZL}	OE or OE	•	1.1	4.7	7,	5.2	1.2	3.2	4.5		4.9	115
^t PHZ		~	1.9	5.5		6.1	2	3.7	5.3		5.9	ns
t _{PLZ}	OE or OE	1	1.9	5.2		5.7	2	3.4	4.9		5.4	115
t _{sk(o)} ‡				0					0.5		0.5	ns

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡] Skew between any two outputs of the same package switching in the same direction. This parameter is warranted but not production tested.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r \leq 2.5$ ns. $t_f \leq 2.5$ ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated