SCBS679 - DECEMBER 1996

•	State-of-the-Art Advanced BiCMOS
	Technology (ABT) Design for 3.3-V
	Operation and Low-Static Power
	Dissipation

- High-Impedance State During Power Up and Power Down
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC})
- Support Unregulated Battery Operation Down to 2.7 V
- Typical V_{OLP} (Output Ground Bounce)
 < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Power Off Disables Inputs/Outputs, Permitting Live Insertion
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages, Ceramic Chip Carriers (FK), and Ceramic (J) DIPs

	(TOP VIEW)									
1 <mark>OE</mark>		$\overline{\mathbf{U}}_{2}$	20] v _{cc}						
1A1	2			20E						
2Y4	[з	1	8] 1Y1						
1A2	4] 2A4						
2Y3	5] 1Y2						
1A3	6	1	5	2A3						
2Y2	7	1	4] 1Y3						
1A4	8	1	3	2A2						
2Y1	9	1	2] 1Y4						

SN54LVTH240 ... J PACKAGE SN74LVTH240 ... DB. DW. OR PW PACKAGE

> SN54LVTH240 . . . FK PACKAGE (TOP VIEW)

2A1

GND 110

		2Υ4	1A1	<u>10E</u>	د در	2 <u>0E</u>	 		
	Γ						J	٦	
1A2	Ь	3 4	2	1	20) 18		1Y1
1A2 2Y3	٦.	5					17		2A4
1A3	b	6					16		1Y2
2Y2 1A4	þ	7					15		2A3
1A4	þ.	8			4.0		14		1Y3
		9	10	11	12	13	3	T	
					<u> </u>				
		Σ	GND	A	¥	A2			

description

These octal buffers and line drivers are designed specifically for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

These devices are organized as two 4-bit buffer/line drivers with separate output-enable (\overline{OE}) inputs. When \overline{OE} is low, the devices pass data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

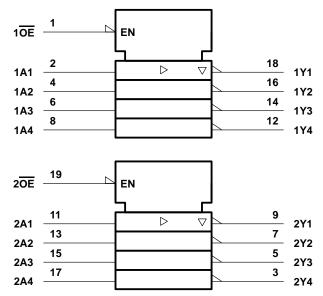
When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74LVTH240 is available in TI's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed circuit board area.

The SN54LVTH240 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74LVTH240 is characterized for operation from -40° C to 85° C.

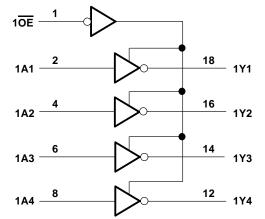
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

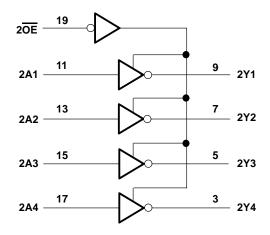
UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 1996, Texas Instruments Incorporated

SCBS679 - DECEMBER 1996


FUNCTION TABLE (each buffer) INPUTS OUTPUT Υ OE Α L Н L L L Н н Х Ζ


logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SCBS679 - DECEMBER 1996

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} 0 Input voltage range, V _I (see Note 1)0	
Voltage range applied to any output in the high state or power-off state, V _O (see Note 1)	
Current into any output in the low state, I _O : SN54LVTH240	96 mA
SN74LVTH240	128 mA
Current into any output in the high state, I _O (see Note 2): SN54LVTH240	48 mA
SN74LVTH240	64 mA
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I_{OK} ($V_O < 0$)	
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 3): DB package	
DW package	
PW package	
Storage temperature range, T _{stg} 65	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$.

3. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the *Package Thermal Considerations* application note in the *ABT Advanced BiCMOS Technology Data Book.*

recommended operating conditions (see Note 4)

			MIN	MAX	MIN	MAX	UNIT
V _{CC}	Supply voltage		2.7	3.6	2.7	3.6	V
VIH	High-level input voltage		2	Έh	2		V
VIL	Low-level input voltage		0.8		0.8	V	
VI	Input voltage		\$ 5.5		5.5	V	
IOH	High-level output current		5 –24		-32	mA	
IOL	Low-level output current	$\eta_{Q_{c}}$	48		64	mA	
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled	24	10		10	ns/V
$\Delta t / \Delta V_{CC}$	Power-up ramp rate		200		200		μs/V
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 4: Unused control inputs must be held high or low to prevent them from floating.

SCBS679 - DECEMBER 1996

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

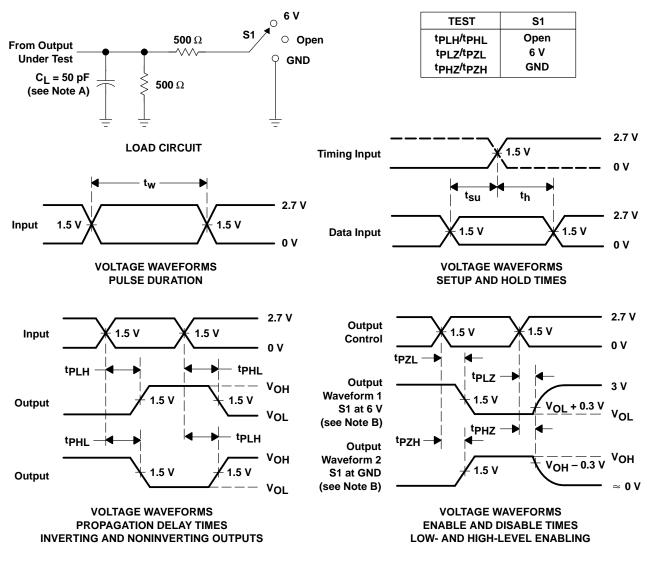
		SN	54LVTH	240	SN								
PARAMETER		MIN	TYP†	MAX	MIN	TYP†	MAX	UNIT					
VIK	V _{CC} = 2.7 V,	lı = –18 mA				-1.2			-1.2	V			
	V _{CC} = 2.7 V to 3.6 V	V _{CC} -0).2		V _{CC} -0	.2							
	V _{CC} = 2.7 V,	I _{OH} = - 8 mA		2.4			2.4			v			
VOH		I _{OH} = – 24 mA		2						v			
	VCC = 3 V	I _{OH} = -32 mA				2							
		I _{OL} = 100 μA				0.2			0.2				
	$V_{CC} = 2.7 V$	I _{OL} = 24 mA				0.5			0.5				
Max		I _{OL} = 16 mA				0.4	0.4			V			
VOL	$\lambda = -2\lambda$	I _{OL} = 32 mA				0.5							
	$V_{CC} = 3 V$	I _{OL} = 48 mA	0.55										
		I _{OL} = 64 mA	E			0.55							
	V _{CC} = 0 or 3.6 V,	VI = 5.5 V		4	10			10					
	V _{CC} = 3.6 V	$V_I = V_{CC} \text{ or } GND$	Control inputs		à	Q ±1			±1	μA			
tj		$V_I = V_{CC}$			C)	1			1	μΛ			
		$V_{I} = 0$	Data inputs		2	-5			-5				
loff	$V_{CC} = 0,$	$V_{I} \text{ or } V_{O} = 0 \text{ to } 4.5 \text{ V}$	/	20	ž	±100			±100	μA			
1. <i>a</i>		VI = 0.8 V	Data inputs	75			75			μA			
l(hold)	$V_{CC} = 3 V$	V _I = 2 V	Data inputs	-75		-75			μΑ				
IOZH	V _{CC} = 3.6 V,	V _O = 3 V				5			5	μA			
IOZL	V _{CC} = 3.6 V,	V _O = 0.5 V				-5			-5	μA			
IOZPU [‡]	$V_{CC} = 0$ to 1.5 V, V	$O = 0.5 V$ to 3 V, $\overline{OE} =$	don't care			±100			±100	μA			
IOZPD [‡]	$V_{CC} = 1.5 V \text{ to } 0, V$	$O = 0.5 \text{ V to 3 V}, \overline{OE} =$	don't care			±100			±100	μΑ			
			Outputs high			0.19			0.19				
lcc	V _{CC} = 3.6 V,	I _O = 0,	Outputs low	5		5	5		mA				
	$V_I = V_{CC}$ or GND	Outputs disabled			0.19			0.19					
ΔICC	$V_{CC} = 3 V \text{ to } 3.6 V,$ Other inputs at V_{CC}	One input at V _{CC} – or GND	0.6 V,			0.2			0.2	mA			
Ci	V _I = 3 V or 0				3			3		pF			
Co	$V_{O} = 3 V \text{ or } 0$				7			7		pF			

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡] This parameter is characterized but not tested.

§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCBS679 - DECEMBER 1996


switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

			SN54LVTH240				SN74LVTH240						
PARAMETER	FROM (INPUT)	TO (OUTPUT)			V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		v	V _{CC} = 2.7 V		UNIT	
			MIN	MAX	MIN	MAX	MIN	TYP†	MAX	MIN	MAX		
^t PLH	А	v	1	3.9		4.7	1.1	2.2	3.8		4.6	ns	
^t PHL	A	Υ.	I	1.2	4.2	ENT	4.3	1.3	2.6	4		4.2	115
^t PZH	OE	v	1	4.7	6r.	5.7	1.1	2.6	4.6		5.6	ns	
^t PZL	ÛE	I	1.3	4.6	•	5.2	1.4	2.7	4.4		5	115	
^t PHZ	OE	v	1.9	4.6		4.8	2	2.9	4.4		4.6	ns	
^t PLZ	UL UL	1	1.7	4.7		4.7	1.8	3	4.3		4.3	115	

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

SCBS679 - DECEMBER 1996

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated