SCBS472E - MAY 1994 - REVISED JUNE 1997

- Compatible With IEEE Std 1194.1-1991 (BTL)
- TTL A Port, Backplane Transceiver Logic (BTL) B Port
- Open-Collector B-Port Outputs Sink 100 mA
- BIAS V_{CC} Pin Minimizes Signal Distortion During Live Insertion/Withdrawal
- High-Impedance State During Power Up and Power Down
- B-Port Biasing Network Preconditions the Connector and PC Trace to the BTL High-Level Voltage
- TTL-Input Structures Incorporate Active Clamping Networks to Aid in Line Termination
- Packaged in Plastic Quad Flatpack

description

The SN74FB2033K is an 8-bit transceiver featuring a split input (AI) and output (AO) bus on the TTL-level A port. The common I/O, open-collector \overline{B} port operates at backplane transceiver logic (BTL) signal levels. The SN74FB2033K is specifically designed to be compatible with IEEE Std 1194.1-1991.

The logic element for data flow in each direction is configured by two mode inputs (IMODE1 and IMODE0 for B-to-A, OMODE1 and OMODE0 for A-to-B) as a buffer, a D-type flip-flop, or a D-type latch. When configured in the buffer mode, the inverted input data appears at the output port. In the flip-flop mode, data is stored on the rising edge of the appropriate clock input (CLKAB/LEAB or CLKBA/LEBA). In the latch mode, the clock inputs serve as active-high transparent latch enables.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1997, Texas Instruments Incorporated

SCBS472E – MAY 1994 – REVISED JUNE 1997

description (continued)

Data flow in the B-to-A direction, regardless of the logic element selected, is further controlled by the LOOPBACK input. When LOOPBACK is low, B-port data is the B-to-A input. When LOOPBACK is high, the output of the selected A-to-B logic element (before inversion) is the B-to-A input.

The AO port-enable/-disable control is provided by OEA. When OEA is low or when V_{CC} is less than 2.5 V, the AO port is in the high-impedance state. When OEA is high, the AO port is active (high or low logic levels).

The \overline{B} port is controlled by OEB and \overline{OEB} . If OEB is low, or \overline{OEB} is high, or when V_{CC} is less than 2.5 V, the \overline{B} port is inactive. If OEB is high and \overline{OEB} is low, the \overline{B} port is active.

BG V_{CC} and BG GND are the bias-generator reference inputs.

The A-to-B and B-to-A logic elements are active, regardless of the state of their associated outputs. The logic elements can enter new data (in flip-flop and latch modes) or retain previously stored data while the associated outputs are in the high-impedance (AO port) or inactive (B port) states.

Output clamps are provided on the BTL outputs to reduce switching noise. One clamp reduces inductive ringing effects on V_{OH} during a low-to-high transition. The other clamps out ringing below the BTL V_{OL} voltage of 0.75 V. Both of these clamps are active only during ac switching and do not affect the BTL outputs during steady-state conditions.

BIAS V_{CC} establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when V_{CC} is not connected.

The SN74FB2033K is characterized for operation from 0°C to 70°C.

FUNCTION								
				INPUTS				FUNCTION/MODE
OEA	OEB	OEB	OMODE1	OMODE0	IMODE1	IMODE0	LOOPBACK	TONOTION/MODE
L	L	Х	Х	Х	Х	Х	Х	Isolation
L	Х	Н	Х	Х	Х	Х	Х	1001011011
Х	Н	L	L	L	Х	Х	Х	AI to B, buffer mode
Х	Н	L	L	Н	Х	Х	Х	AI to \overline{B} , flip-flop mode
Х	Н	L	Н	Х	Х	Х	Х	AI to \overline{B} , latch mode
Н	L	Х	Х	Х	L	L	L	
Н	Х	Н	Х	Х	L	L	L	B to AO, buffer mode
Н	L	Х	Х	Х	L	Н	L	E to AO film flom mode
Н	Х	Н	Х	Х	L	Н	L	B to AO, flip-flop mode
Н	L	Х	Х	Х	Н	Х	L	
Н	Х	Н	Х	Х	Н	Х	L	\overline{B} to AO, latch mode
Н	L	Х	Х	Х	L	L	Н	AI to AO, buffer mode
Н	Х	Н	Х	Х	L	L	Н	Al to AO, builer mode
Н	L	Х	Х	Х	L	Н	Н	AI to AO, flip-flop mode
Н	Х	Н	Х	Х	L	Н	Н	Al to AO, hip-hop mode
Н	L	Х	Х	Х	Н	Х	Н	
Н	Х	Н	Х	Х	Н	Х	Н	AI to AO, latch mode
Н	Н	L	Х	Х	Х	Х	L	AI to B, B to AO

Function Tables

SCBS472E - MAY 1994 - REVISED JUNE 1997

Function Tables (Continued)

		ENABLE	/DISABLE		
	INPUTS		OUTPUTS		
OEA	OEB	OEB	AO	В	
L	Х	Х	Hi Z		
Н	Х	х	Active		
Х	L	L		Inactive (H)	
Х	L	н		Inactive (H)	
Х	Н	L		Active	
Х	Н	Н		Inactive (H)	

ы	JFFER	
DU	JEER	

INPUT	OUTPUT
L	Н
Н	L

LATCH

INPU	TS	OUTPUT		
CLK/LE	DATA	001F01		
Н	L	Н		
н	н	L		
L	Х	Q ₀		

LOOPBACK

LOOPBACK	Q†
L	B port
Н	Point P [‡]
L	

[†]Q is the input to the B-to-A

I ogic element.
P is the output of the A-to-B logic element (see functional block diagram).

SELECT

INP	UTS	SELECTED-LOGIC
MODE1	MODE0	ELEMENT
L	L	Buffer
L	Н	Flip-flop
Н	Х	Latch

FLIP-FLOP

INPU	TS	OUTPUT
CLK/LE	DATA	001F01
L	Х	Q ₀
\uparrow	L	Н
\uparrow	Н	L

SCBS472E - MAY 1994 - REVISED JUNE 1997

functional block diagram

SCBS472E - MAY 1994 - REVISED JUNE 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} -0.5 V to 7 V Voltage range applied to any B output in the disabled or power-off state, V _O -0.5 V to 3.5 V Voltage range applied to any output in the high state, V _O : A port -0.5 V to V _{CC} Input voltage range, V _I : Except B port -1.2 V to 7 V B port -1.2 V to 3.5 V Input clamp current, I _{IK} : Except B port -40 mA B port -18 mA Current applied to any single output in the low state, I _O : A port 48 mA B port 200 mA
Package thermal impedance, θ _{JA} (see Note 1): RC package 200 mA Storage temperature range, T _{stg} -65°C to 150°C

⁺ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 2)

			MIN	NOM	MAX	UNIT
V _{CC} , BG V _{CC}	Supply voltage		4.75	5	5.25	V
$BIASV_{CC}$	Supply voltage		4.5	5	5.5	V
VIH	High-level input voltage	B port	1.62		2.3	V
	nigh-level liiput voltage	Except B port	2			v
V.	Low-level input voltage	B port	0.75		1.47	47 V
VIL	Low-level input voltage	Except B port			0.8	
IОН	High-level output current	AO port			-3	mA
le.		AO port			24	mA
IOL	Low-level output current	B port			100	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Except B port			10	ns/V
т _А	Operating free-air temperature		0		70	°C

NOTE 2: Unused pins (input or I/O) must be held high or low to prevent them from floating.

SCBS472E - MAY 1994 - REVISED JUNE 1997

electrical characteristics over recommended operating free-air temperature range

	PARAMETER	TEST C	ONDITIONS	MIN	түр†	MAX	UNIT	
Maria	B port	V _{CC} = 4.75 V,	l _l = –18 mA			-1.2	v	
۷IK	Except B port	V _{CC} = 4.75 V,	I _I = -40 mA			-0.5	v	
		V_{CC} = 4.75 V to 5.25 V,	I _{OH} = −10 μA			V _{CC} -1.1		
VOH	AO port		I _{OH} = -3 mA	2.5	2.85	3.4	V	
		V _{CC} = 4.75 V	I _{OH} = -32 mA	2				
	AO port	V _{CC} = 4.75 V	I _{OL} = 20 mA		0.33	0.5		
VIK VOH VOL II II IIL IOH IOZH A IOZPU A IOST A IOST A Ci A	AO poir	$V_{CC} = 4.75 V$	I _{OL} = 55 mA			0.8	v	
	-	V _{CC} = 4.75 V	I _{OL} = 100 mA	0.75		1.1	v	
	B port	$^{\circ}CC = 4.73$ $^{\circ}$	I _{OL} = 4 mA	0.5				
l	Except B port	$V_{CC} = 0,$	V _I = 5.25 V			100	μΑ	
ЧΗ	Except B port	V _{CC} = 5.25 V,	V _I = 2.7 V			50	μA	
	B port‡	$V_{CC} = 0$ to 5.25 V,	V _I = 2.1 V			100		
	Except B port	V _{CC} = 5.25 V,	V _I = 0.5 V			-50	A	
ΊL	B port‡	V _{CC} = 5.25 V,	VI = 0.75 V			-100	μA	
ЮН	B port	$V_{CC} = 0$ to 5.25 V,	V _O = 2.1 V			100	μA	
IOZH	AO port	V _{CC} = 2.1 V to 5.25 V,	V _O = 2.7 V			50	μA	
I _{OZL}	AO port	V _{CC} = 2.1 V to 5.25 V,	V _O = 0.5 V			-50	μA	
IOZPU [§]	A port	$V_{CC} = 0$ to 2.1 V,	V_{O} = 0.5 V to 2.7 V			50	μA	
	A port	V _{CC} = 2.1 V to 0,	V_{O} = 0.5 V to 2.7 V			-50	μA	
	AO port	V _{CC} = 5.25 V,	V _O = 0	-40	-80	-150	mA	
ICC	All outputs on	V _{CC} = 5.25 V,	IO = 0		45	70	mA	
Ci	AI port and control inputs	VI = 0.5 V or 2.5 V			5		pF	
Co	AO port	V _O = 0.5 V or 2.5 V			5		pF	
C. 8	B port	V _{CC} = 0 to 4.75 V				6	۶E	
C _{io} §	per IEEE Std 1194.1-1991	V _{CC} = 4.75 V to 5.25 V				6	pF	

[†] All typical values are at $V_{CC} = 5 \text{ V}$, TA = 25°C [‡] For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current. § This parameter is warranted but not production tested.

¶ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

SCBS472E - MAY 1994 - REVISED JUNE 1997

live-insertion characteristics over recommended operating free-air temperature range (see Note 3)

PARAMETER		TEST CONDITIONS			MIN	MAX	UNIT
I _{CC} (BIAS V _{CC})		$V_{CC} = 0$ to 4.75 V	$V_{B} = 0$ to 2 V,	BIAS V_{CC} = 4.5 V to 5.5 V		1.2	mA
		V_{CC} = 4.75 V to 5.25 V	$V_{B} = 0 \text{ to } 2 \text{ V},$	BIAS V_{CC} = 4.5 V to 5.5 V		10	μA
VO	B port	$V_{CC} = 0,$	BIAS $V_{CC} = 5 V$		1.62	2.1	V
		$V_{CC} = 0,$	V _B = 1 V,	V_{I} (BIAS V_{CC}) = 4.75 V to 5.25 V	-1		
ю	B port	$V_{CC} = 0$ to 5.25 V,	OEB = 0 to 0.8 V			100	μA
		$V_{CC} = 0$ to 2.2 V,	OEB = 0 to 5 V			100	

NOTE 3: Power-up sequence is as follows: GND, BIAS V_{CC}, V_{CC}.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 2)

		V _{CC} = 5 V, T _A = 25°C		MIN	МАХ	UNIT
		MIN	MAX			
fclock	Clock frequency	0	150	0	150	MHz
tw	Pulse duration, CLKAB/LEAB or CLKBA/LEBA	3.3		3.3		ns
t _{su}	Setup time, data before CLKAB/LEAB or CLKBA/LEBA↑	2.7		2.7		ns
t _h	Hold time, data after CLKAB/LEAB or CLKBA/LEBA↑	0.7		0.7		ns

SCBS472E - MAY 1994 - REVISED JUNE 1997

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V (V _{CC} = 5 V, T _A = 25°C			МАХ	UNIT	
			MIN	TYP	MAX				
fmax			150			150		MHz	
^t PLH	AI (through mode)	B	2.8	5.1	6.8	2.8	8.1	20	
^t PHL	- AI (through mode)		2.5	4.2	5.7	2.5	6.1	ns	
^t PLH	B (through mode)	AO	3.1	4.3	5.1	2.2	6.6	ns	
^t PHL	B (Infough mode)		3.1	4.2	5.1	2.6	6		
^t PLH	AI (transparent)	B	2.8	5.1	6.8	2.8	8.1	ns	
^t PHL			2.6	4.2	5.7	2.6	6.1	113	
^t PLH	B (transparent)	AO	2.2	4.3	6	2.2	6.6	ns	
^t PHL	B (transparent)	AO	2.5	4.2	5.6	2.5	6	115	
^t PLH	OEB	B	2.7	5.1	6.8	2.7	8.3	ns	
^t PHL	OLB		2.4	4.2	5.7	2.4	6.1		
^t PLH	OEB		2.5	4.8	6.4	2.5	7.7	ns	
^t PHL	UEB	В	2.5	4.3	5.9	2.5	6.4	113	
^t PZH	OEA	AO	1.6	3.6	5.1	1.6	5.6	ns	
^t PZL	UEA		2.3	4.3	5.7	2.3	6		
^t PHZ	OEA	AO	1.7	4	5.5	1.7	5.9	ns	
^t PLZ			1.2	2.9	4.4	1.2	4.7		
^t PLH	CLKAB/LEAB	B	5.2	6.5	7.8	3.7	9.9	ns	
^t PHL	CERAD/EEAD	В	3.8	5.4	7.1	3.4	7.7	113	
^t PLH	CLKBA/LEBA	AO	1.7	3.8	5.5	1.7	5.9	ns	
^t PHL			1.8	3.6	5.1	1.8	5.5		
^t PLH	OMODE	B	2.9	6.6	8.4	2.9	10	ns	
^t PHL			3	5.7	7.5	3	8.3		
^t PLH	IMODE	AO	1.4	4.1	5.8	1.4	6.4	ns	
^t PHL			1.9	4.2	5.7	1.9	5.9		
^t PLH	LOOPBACK	AO	2	5.2	7.3	2	8.2	ns	
^t PHL	LOOFBACK	AO	2.6	4.8	6.3	2.6	6.4		
^t PLH		AO	1.7	3.9	5.6	1.7	6.1	20	
^t PHL	AI	AU	2.2	4.3	5.7	2.2	5.9	ns	
t_r Rise time, 1.3 V to 1.8 V, \overline{B} port			1.8	2.5	3.8	1.7	4		
t _f Fall time, 1.8 V to 1.3 V, B port			1.7	2.5	3.8	1.5	4	ns	
t _r Rise time, 10% to 90%, AO			2.5	3.4	4.8	2	5	200	
t _f Fall time, 90% to 10%, AO			1.5	2.5	3.8	1	5	5 ns	
B-port input pulse rejection						1		ns	

SCBS472E - MAY 1994 - REVISED JUNE 1997

output-voltage characteristics

PARAMETER			TEST CONDITIONS	MIN	MAX	UNIT
VOHP [†]	Peak output voltage during turnoff of 100 mA into 40 nH	B port	See Figure 1		3	V
VOHV [†]	Minimum output voltage during turnoff of 100 mA into 40 nH	B port	See Figure 1	1.62		V
VOLV	Minimum output voltage during high-to-low switch	B port	I _{OL} = -50 mA	0.3		V

[†] This parameter is warranted but not production tested.

PARAMETER MEASUREMENT INFORMATION

Figure 1. Load Circuit for $V_{\mbox{OHP}}$ and $V_{\mbox{OHV}}$

SCBS472E - MAY 1994 - REVISED JUNE 1997

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: TTL inputs: PRR ≤ 10 MHz, Z_O = 50 Ω, t_r ≤ 2.5 ns,
- t_f \leq 2.5 ns; BTL inputs: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated