SCBS469 - FEBRUARY 1991 - REVISED OCTOBER 1992

 Members of the Texas Instruments Widebus™ Family State of the Art EBIC UB™ BiCMOS Design 	SN54ABT16373 WD PACKAGE SN74ABT16373 DL PACKAGE (TOP VIEW)
 State-of-the-Art EPIC-IIB[™] BiCMOS Design Significantly Reduces Power Dissipation 	
 ESD Protection Exceeds 2000 V Per 	1 0E [] 1
MIL-STD-883C, Method 3015; Exceeds	1Q2 3 46 1D2
200 V Using Machine Model (C = 200 pF,	
R = 0)	1Q3 🛛 5 44 🗋 1D3
Latch-Up Performance Exceeds 500 mA	1Q4 [6 43] 1D4
Per JEDEC Standard JESD-17	V_{CC} 7 42 V_{CC}
• Typical V _{OLP} (Output Ground Bounce)	1Q5 8 41 1D5
< 0.8 V at V_{CC} = 5 V, T_A = 25°C	1Q6 9 40 1D6 GND 10 39 GND
 Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise 	
	1Q8 12 37 1D8
 Flow-Through Architecture Optimizes PCB Layout 	2Q1 13 36 2D1
-	2Q2 🛛 14 35 🗍 2D2
 High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OL}) 	GND 15 34 GND
 Packaged in Plastic 300-mil Shrink 	2Q3 16 33 2D3
Small-Outline Packages and 380-mil	2Q4 17 32 2D4
Fine-Pitch Ceramic Flat Packages Using	V _{CC}
25-mil Center-to-Center Spacings	2Q6 20 29 2D6
	GND 21 28 GND
description	2Q7 22 27 2D7
The 4ABT16373 is a 16-bit transparent D-type	2 <u>Q8</u> [23 26] 2D8

d

4ADI 10373 IS a 10-DIL transparent D-type latch with 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. It is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The device can be used as two 8-bit latches or one 16-bit latch. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs.

20E 224

25 2LE

A buffered output-enable (OE) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components

The output enable (\overline{OE}) does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

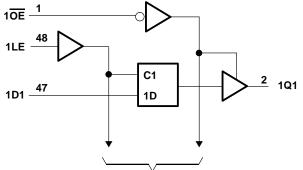
The SN74ABT16373 is available in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT16373 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABT16373 is characterized for operation from -40°C to 85°C.

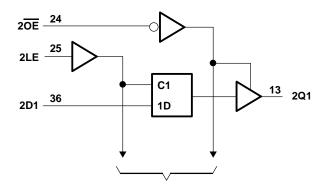
Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters

Copyright © 1992, Texas Instruments Incorporated


SCBS469 - FEBRUARY 1991 - REVISED OCTOBER 1992

FUNCTION TABLE (each latch)								
	INPUTS		OUTPUT					
OE	LE	D	Q					
L	Н	Н	н					
L	н	L	L					
L	L	Х	Q ₀ Z					
Н	Х	Х	Z					


logic symbol[†]

48	
$\frac{1 \text{LE}}{24} \qquad \qquad$	
20E 25 2EN	
2LE C4	
1D1 <u>47</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u></u>	2 101
46	- 1Q1 3
1D2 44	- 1Q2 5
1D3 43	- 1Q3
1D4 41	<u> </u>
1D5 40	1Q5 9
1D6 38 1	— 1Q6 1
1D7 <u>37</u> 1	- 1Q7 2
1D8 1	— 1Q8 3
2D1 4D2 ⊽	- 2Q1 4
2D21	— 2Q2 6
2D3 1	— 2Q3 7
2D4	2Q4 9
2D5	<u> </u>
2D6	2Q6
2D7	2 2Q7
2D8	<u> </u>

logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SCBS469 - FEBRUARY 1991 - REVISED OCTOBER 1992

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} -0.5 V to 7 V Input voltage range, V _I (see Note 1) -0.5 V to 7 V Voltage range applied to any output in the high state or power-off state, V _O -0.5 V to 7 V Current into any output in the low state, I _O : SN54ABT16373 96 mA SN74ABT16373 128 mA
$ \begin{array}{llllllllllllllllllllllllllllllllllll$

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 2)

			SN54AF	3T16373	SN74AE	UNIT	
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	High-level input voltage		2	EL	2		V
VIL	Low-level input voltage		0.8		0.8	V	
VI	Input voltage	0	⊘ V _{CC}	0	VCC	V	
ЮН	High-level output current	vel output current				-32	mA
IOL	Low-level output current		00	48		64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled	40	10		10	ns/V
Т _А	Operating free-air temperature		-55	125	-40	85	°C

NOTE 2: Unused or floating inputs must be held high or low.

SCBS469 - FEBRUARY 1991 - REVISED OCTOBER 1992

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	TEST CONDITIONS		T _A = 25°C			SN54AE	3T16373	SN74ABT16373		
PARAMETER			MIN	TYP†	MAX	MIN	MAX	MIN	MAX	UNIT
VIK	$V_{CC} = 4.5 \text{ V}, I_{I} = -18 \text{ mA}$				-1.2		-1.2		-1.2	V
	$V_{CC} = 4.5 \text{ V}, I_{OH} = -3 \text{ mA}$					2.5		2.5		
Maria	$V_{CC} = 5 V$, $I_{OH} = -3 mA$		3			3		3		V
VOH	$V_{CC} = 4.5 \text{ V}, I_{OH} = -24 \text{ m/}$	ł	2			2				v
	$V_{CC} = 4.5 \text{ V}, I_{OH} = -32 \text{ m}.$	٩	2‡					2		
Max	$V_{CC} = 4.5 \text{ V}, I_{OL} = 48 \text{ mA}$				0.55		0.55			V
VOL	V _{CC} = 4.5 V, I _{OL} = 64 mA				0.55‡				0.55	V
lj	$V_{CC} = 5.5 \text{ V}, V_{I} = V_{CC} \text{ or GND}$				±1		E		±1	μΑ
IOZH	V _{CC} = 5.5 V, V _O = 2.7 V				50		50		50	μΑ
IOZL	$V_{CC} = 5.5 \text{ V}, V_{O} = 0.5 \text{ V}$				-50	4	2 –50		-50	μΑ
loff	$V_{CC} = 0,$ $V_{I} \text{ or } V_{O} \le 4.5$	5 V			±100	(C)	2		±100	μΑ
ICEX	$V_{CC} = 5.5 \text{ V}, V_{O} = 5.5 \text{ V}$	Outputs high			50	201	50		50	μΑ
١٥	$V_{CC} = 5.5 \text{ V}, V_{O} = 2.5 \text{ V}$	_	-50	-100	-180	-50	-180	-50	-180	mA
		Outputs high			2	1	2		2	
ICC	$V_{CC} = 5.5 \text{ V}, I_O = 0,$ Outputs	Outputs low			85		85		85	mA
	VI = VCC or GND Outputs disabled				2		2		2	
∆ICC¶	$V_{CC} = 5.5 \text{ V}$, One input at 3.4 V, Other inputs at V_{CC} or GND				1.5		1.5		1.5	mA
Ci	VI = 2.5 V or 0.5 V			3.5						pF
Co	V _O = 2.5 V or 0.5 V			9.5						pF

[†] All typical values are at V_{CC} = 5 V.

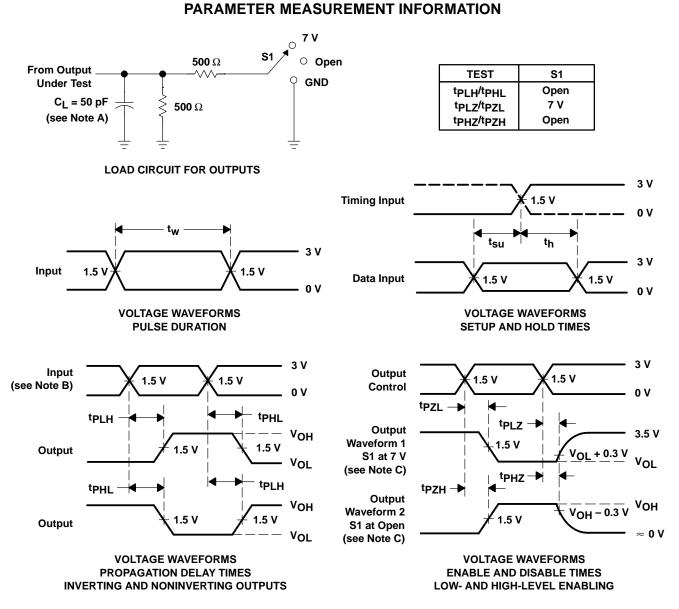
[‡]On products compliant to MIL-STD-883, Class B, this parameter does not apply.

§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

		V _{CC} = 5 V, T _A = 25°C	SN54ABT16373	SN74ABT16373	UNIT
		MIN MAX		MIN MAX	
tw	Pulse duration, LE high	3.3	3.3	3.3	ns
t _{su}	Setup time, data before LE \downarrow	1.5	1.5 4	1.5	ns
th	Hold time, data after LE \downarrow	1	R	1	ns


SCBS469 - FEBRUARY 1991 - REVISED OCTOBER 1992

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	TO (OUTPUT)	V(T	CC = 5 V A = 25°C	/, ;	SN54AB	T16373	SN74AB	T16373	UNIT
	(INPUT)	(001201)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
^t PLH	D	Q	1.9	4.1	5.3	1.9	6.5	1.9	6.3	
^t PHL		Ŷ	2.3	4.3	5.4	2.3	6.5	2.3	6.2	ns
^t PLH	LE	Q	2.1	4.5	5.7	2.1	7	2.1	6.7	
^t PHL	LE	y	2.6	4.5	5.6	2.6	6.3	2.6	6.1	ns
^t PZH	OE	Q	1.5	3.9	5	1.5	6.4	1.5	6.1	ns
^t PZL	ÛE	ý	1.8	3.8	4.9	1.8	5.8	1.8	5.6	115
^t PHZ	OE	Q	2.4	6.5	8.8	2.4	10.8	2.4	10.3	
^t PLZ	UE UE	y y	2.3	5.3	7.6	2.3	8.7	2.3	8.1	ns

SCBS469 - FEBRUARY 1991 - REVISED OCTOBER 1992

NOTES: A. CL includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated