SCBS468 - JUNE 1992-REVISED OCTOBER 1992

- Members of the Texas Instruments Widebus™ Family
- State-of-the-Art EPIC-IIB™ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical V_{OLP} (Output Ground Bounce) < 1 V at V_{CC} = 5 V, T_A = 25°C
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OL})
- Bus-Hold Inputs Eliminate the Need for External Pullup Resistors
- Packaged in Plastic 300-mil Shrink Small-Outline Packages (DL) and 380-mil Fine-Pitch Ceramic Flat Packages (WD) Using 25-mil Center-to-Center Spacings

description

The 'ABT16265 is a 12-bit to 24-bit multiplexed transceiver used in applications where two separate data paths must be multiplexed onto, or demultiplexed from, a single data path. Typical applications include multiplexing and/or demultiplexing of address and data information in microprocessor- or bus-interface applications. This device is also useful in memory-interleaving applications.

SN54ABT16265 . . . WD PACKAGE SN74ABT16265 . . . DL PACKAGE (TOP VIEW)

	_	U		L
OEA	1	_	56	OE2B
GND	2		55	GND
2B3	3		54]2B4
GND	4		53	GND
2B2	1 5		52	2B5
2B1	6		51]2B6
V _{CC}	7		50]v _{cc}
A1	1 8		49	2B7
A2	9		48	2B8
А3			47	2B9
GND	11		46	GND
A4	12		45	2B10
A5	13		44	2B11
A6	14		43	2B12
A7	15		42]1B12
A8	16		41] 1B11
A9	17		40]1B10
GND	18		39	GND
A10	19		38] 1B9
A11	20		37] 1B8
A12	21		36] 1B7
V _{CC}	22		35]v _{cc}
1B1	23		34] 1B6
1B2	24		33] 1B5
GND [25		32	GND
1B3	26		31]1B4
GND [27		30	GND
SEL [28		29	OE1B

Three 12-bit I/O ports (A1-A12, 1B1-1B12, and 2B1-2B12) are available for address and/or data transfer. The output-enable (OE1B, OE2B, and OEA) inputs control the bus transceiver functions. These control signals also allow byte-control of the most significant byte and least significant byte for each bus.

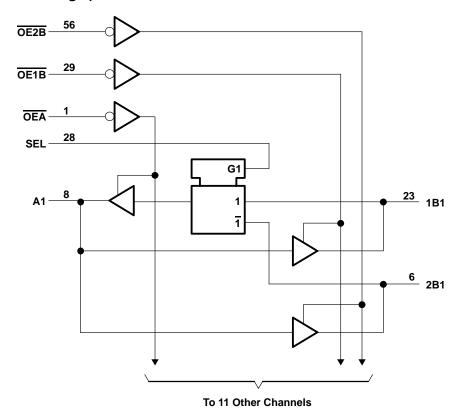
Active bus-hold circuitry is provided to hold unused or floating inputs at a valid logic level.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT16265 is packaged in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT16265 is characterized for operation over the full military temperature range of -55° C to 125°C. The SN74ABT16265 is characterized for operation from -40° C to 85°C.

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.



FUNCTION TABLES

	INP	OUTPUT		
1B	2B	SEL	OEA	Α
Н	Х	Н	L	Н
L	X	Н	L	L
Х	Н	L	L	Н
Х	L	L	L	L
Х	X	X	Н	Z

	INPUTS		OUTPUTS			
Α	OE1B OE2B		1B	2B		
Н	L	L	Н	Н		
L	L	L	L	L		
Χ	Н	Н	Z	Z		
Х	L	Н	Active	Z		
Х	Н	L	Z	Active		
Χ	L	L	Active	Active		

logic diagram (positive logic)

PRODUCT PREVIEW

JUNE 1992-REVISED OCTOBER 1992

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	\dots -0.5 V to 7 V
Input voltage range, V _I (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, VO	0.5 V to 5.5 V
Current into any output in the low state, IO: SN54ABT16265	96 mA
SN74ABT16265	128 mA
Input clamp current, I _{IK} (V _I < 0)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Maximum power dissipation at T _A = 55°C (in still air)	1 W
Storage temperature range	. −65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions

			SN54AB	SN54ABT16265		SN74ABT16265		
			MIN	MAX	MAX MIN MAX 5.5 4.5 5.5 2 0.8 0.8	UNIT		
VCC	Supply voltage		4.5	5.5	4.5	5.5	V	
VIH					2		V	
V _{IL}	V _{IL} Low-level input voltage			0.8		0.8	V	
VI	V _I Input voltage			Vcc	0	Vcc	V	
ІОН	IOH High-level output current					-32	mA	
lOL	OL Low-level output current			48		64	mA	
Δt/Δν	Input transition rise or fall rate	Outputs enabled		10		10	ns/V	
TA	Operating free-air temperature				-40	85	°C	

JUNE 1992-REVISED OCTOBER 1992

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

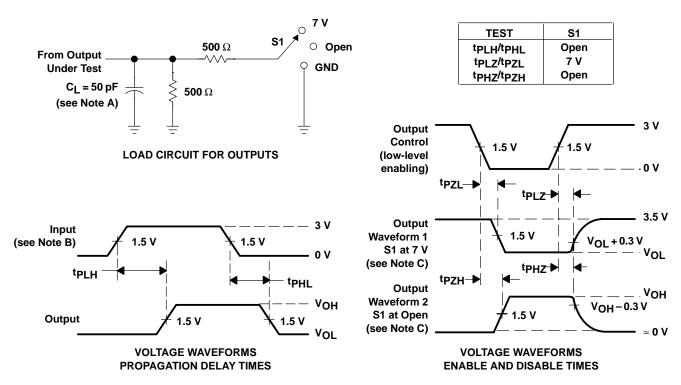
DADAMETER	TEST CONDITIONS			T _A = 25°C			SN54ABT16265		SN74ABT16265		
PARAMETER				MIN	TYP [†]	MAX	MIN	MAX	MIN	MAX	UNIT
VIK	$V_{CC} = 4.5 \text{ V},$	I _I = -18 mA				-1.2		-1.2		-1.2	V
	V _{CC} = 4.5 V,						2.5		2.5		
	V _{CC} = 5 V,						3		3		V
VOH	$V_{CC} = 4.5 \text{ V},$			2			2				V
				2‡					2		
	$V_{CC} = 4.5 \text{ V},$	I _{OL} = 48 mA				0.55		0.55			V
VOL	$V_{CC} = 4.5 \text{ V},$	$I_{\parallel} = -18 \text{ mA}$ $I_{OH} = -3 \text{ mA}$ $I_{OH} = -3 \text{ mA}$ $I_{OH} = -24 \text{ mA}$ $I_{OL} = 48 \text{ mA}$ $I_{OL} = 64 \text{ mA}$ $I_{OL} = 64 \text{ mA}$ $V_{\parallel} = 0.8 \text{ V}$ $V_{\parallel} = 2 \text{ V}$ $V_{\parallel} = 2 \text{ V}$ $V_{\parallel} = 2.7 \text{ V}$ $V_{\parallel} = 0.5 \text{ V}$				0.55‡				0.55	٧
	V _{CC} = 5.5 V,		Control inputs			±1		±1		±1	μΑ
lj .	$V_I = V_{CC}$ or GND		A or B ports			±100		±100		±100	
	$V_{CC} = 4.5 \text{ V},$	V _I = 0.8 V	A D						100		μА
^I hold	V _{CC} = 4.5 V,	V _I = 2 V	A or B ports						-100		
I _{OZH} §	V _{CC} = 5.5 V,	V _O = 2.7 V				50		50		50	μΑ
I _{OZL} §	$V_{CC} = 5.5 \text{ V}, \qquad V_{O} = 0.5 \text{ V}$					-50		-50		-50	μΑ
lOFF	$V_{CC} = 0 V$	V_I or $V_O \le 4$.	5 V			±100				±100	μΑ
ICEX	V _{CC} = 5.5 V,	V _O = 5.5 V	Outputs high			50		50		50	μΑ
ΙΟ [¶]	V _{CC} = 5.5 V,	V _O = 2.5 V		-50	-100	-180	-50	-180	-50	-180	mΑ
	$V_{CC} = 5.5 \text{ V},$		Outputs high			3		3		3	mA
ICC	$I_{O} = 0$,	A or B ports	Outputs low			60		60		60	
	$V_I = V_{CC}$ or GND		Outputs disabled			2		2		2	
	V _{CC} = 5.5 V, One	Data innui	Outputs enabled			1		1.5		1	
∆lCC [#]	input at 3.4 V, Other inputs at	Outputs disabled			0.05		0.05		0.05	mA	
	V _{CC} or GND	Control inputs	3			1.5		1.5		1.5	
C _i	V _I = 2.5 V or 0.5 V Control inputs		Control inputs								pF
C _{io}	V _O = 2.5 V or 0.5 V	/	A or B ports								pF

 $[\]uparrow$ All typical values are at $V_{CC} = 5 \text{ V}$.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50$ pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, T _A = 25 °C			SN54AB	Г16265	SN74ABT16265		UNIT		
	(1141 01)		MIN	TYP	MAX	MIN	MAX	MIN	MAX			
^t PLH	A or B	B or A								ns		
^t PHL		D OI A								115		
^t PLH	SEL	А								ns		
^t PHL	SEL	A								115		
^t PZH	OE	OF	OF	A or B								ns
^t PZL		OL AOIB								115		
^t PHZ	OE	A or B		·			·			ns		
tPLZ		7.010								113		

[‡] On products compliant to MIL-STD-883, Class B, this parameter does not apply.


[§] The parameters IOZH and IOZL include the input leakage current.

[¶] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

[#]This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

JUNE 1992-REVISED OCTOBER 1992

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$, $t_r \leq 2.5$ ns. $t_f \leq 2.5$ ns.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated