SN54ABT16862, SN74ABT16862 **20-BIT BUS TRANSCEIVERS** WITH 3-STATE OUTPUTS SCBS456 - OCTOBER 1992

Members of the Texas Instruments <i>Widebus</i> ™ Family	SN54ABT16862 WD PACKAGE SN74ABT16862 DL PACKAGE (TOP VIEW)
 State-of-the-Art EPIC-IIB ™ BiCMOS Design Significantly Reduces Rever Discinction 	
Significantly Reduces Power Dissipation	10ЕАВ [] 1 56] 10ЕВА
Latch-Up Performance Exceeds 500 mA Per	1B1 2 55 1A1
JEDEC Standard JESD-17	1B2 3 54 1A2
 Typical V_{OLP} (Output Ground Bounce) < 1 V 	
at V _{CC} = 5 V, T _A = 25°C	
 Distributed V_{CC} and GND Pin Configuration 	
Minimizes High-Speed Switching Noise	V _{CC} 7 50 V _{CC} 1B5 8 49 1A5
 Flow-Through Architecture Optimizes PCB 	1B6 9 48 1A6
Layout	1B7 10 47 1A7
 High-Drive Outputs (–32-mA I_{OH}, 	GND 11 46 GND
64-mA I _{OL})	1B8 12 45 1A8
Packaged in Plastic 300-mil Shrink	1B9 13 44 1A9
Small-Outline Packages (DL) and 380-mil	1B10 14 43 1A10
Fine-Pitch Ceramic Flat Packages (WD)	2B1 🛛 15 42 🗍 2A1
Using 25-mil Center-to-Center Spacings	2B2 🚺 16 41 🗍 2A2
description	2B3 🛛 17 40 🗍 2A3
description	GND 🛛 18 39 🗍 GND
The 'ABT18862 is a 20-bit transceiver designed	2B4 🛛 19 🛛 38 🗍 2A4
for asynchronous communication between data	2B5 🛛 20 37 🗋 2A5
buses. The control function implementation allows	2B6 2 21 36 2 A6
for maximum flexibility in timing.	V _{CC} 22 35 V _{CC}
The 'ABT16862 can be used as two 10-bit	2B7 23 34 2A7
transceivers or one 20-bit transceiver. It allows	2B8 24 33 2A8
data transmission from the A bus to the B bus or	GND 25 32 GND
from the B bus to the A bus depending upon the	2B9 26 31 2A9
logic levels at the output-enable (OEAB and	2B10 27 30 2A10
OEBA) inputs.	2 <mark>0EAB [</mark> 28 29] 20EBA

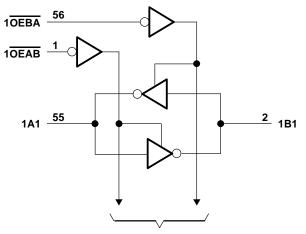
To ensure the high-impedance state during power up or power down, OE should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

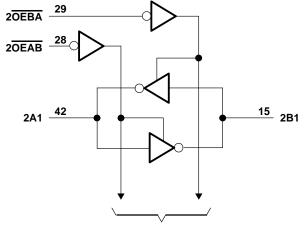
The SN74ABT16862 is packaged in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT16862 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABT16862 is characterized for operation from -40°C to 85°C.

(each 10-bit section)								
INP	UTS	OPERATION						
OEAB	OEBA	OPERATION						
L	Н	A data to B bus						
Н	L	B data to A bus						
Н	Н	Isolation						
L	L	Latch A and B (A = \overline{B})						

FUNCTION TABLE h 10 hit a


Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.


SN54ABT16862, SN74ABT16862 20-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCBS456 - OCTOBER 1992

logic diagram (positive logic)

To 9 Other Channels

To 9 Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

	•
Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I (except I/O ports) (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, V _O	-0.5 V to 5.5 V
Current into any output in the low state, IO: SN54ABT16862	96 mA
SN74ABT16862	128 mA
Input clamp current, I _{IK} (V _I < 0)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Maximum power dissipation at T _A = 55°C (in still air)	1 W
Storage temperature range	-65°C to 150°C

⁺ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 2)

		SN54AB	T16862	SN74ABT16862		UNIT	
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		4.5	5.5	4.5	5.5	V
VIH High-level input voltage					2		V
VIL	VIL Low-level input voltage					0.8	V
VI Input voltage				VCC	0	VCC	V
IOH High-level output current				-24		-32	mA
IOL	IOL Low-level output current					64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
Т _А	Q Operating free-air temperature				-40	85	°C

NOTE 2: Unused or floating inputs must be held high or low.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

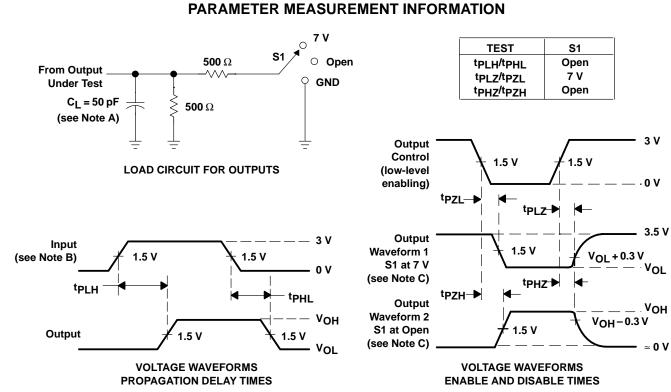
	TEST CONDITIONS			Т	A = 25°	0	SN54ABT16862		SN74ABT16862				
PARAMETER				MIN	түр†	MAX	MIN	MAX	MIN	MAX	UNIT		
VIK	V _{CC} = 4.5 V,	, I _I = −18 mA				-1.2		-1.2		-1.2	V		
	$V_{CC} = 4.5 \text{ V}, \qquad I_{OH} = -3 \text{ mA}$			2.5			2.5		2.5				
M a a a	$V_{CC} = 5 V$, $I_{OH} = -3 mA$			3			3		3		v		
Vон	$V_{CC} = 4.5 \text{ V}, \qquad I_{OH} = -24 \text{ mA}$			2			2				V		
	$V_{CC} = 4.5 \text{ V}, \qquad I_{OH} = -32 \text{ mA}$			2‡					2				
Ve	$V_{CC} = 4.5 \text{ V}, \qquad I_{OL} = 48 \text{ mA}$					0.55		0.55			v		
VOL	V _{CC} = 4.5 V,	I _{OL} = 64 mA				0.55‡				0.55	v		
1.	V _{CC} = 5.5 V,		Control inputs			±1		±1		±1	1		
Ι	$V_I = V_{CC}$ or GND				±100		±100		±100	μA			
IOZH [§]	V _{CC} = 5.5 V,	V _O = 2.7 V				50		50		50	μΑ		
IOZL [§]	$V_{CC} = 5.5 \text{ V}, \qquad V_{O} = 0.5 \text{ V}$					-50		-50		-50	μA		
IOFF	$V_{CC} = 0 V,$	$V_{I} \text{ or } V_{O} \leq 4.$	5 V			±100				±100	μA		
ICEX	V _{CC} = 5.5 V,	VO = 5.5 V	Outputs high			50		50		50	μA		
۱ ₀ ¶	V _{CC} = 5.5 V,	V, $V_0 = 2.5 V$			-100	-180	-50	-180	-50	-180	mA		
	V _{CC} = 5.5 V,		Outputs high			2		2		2			
ICC	I _O = 0,	A or B ports	Outputs low			32		32		32	mA		
	$V_I = V_{CC}$ or GND		Outputs disabled			2		2		2			
	V _{CC} = 5.5 V, One	Doto inputo	Outputs enabled			1		1.5		1			
$\Delta I_{CC}^{\#}$	input at 3.4 V, Data inputs Other inputs at		Outputs disabled			0.05		0.05		0.05	mA		
	V _{CC} or GND Control inputs					1.5		1.5		1.5			
Ci	V _I = 2.5 V or 0.5 V Control inputs									pF			
C _{io}	$V_{O} = 2.5 \text{ V or } 0.5 \text{ V}$ A or B ports										pF		

[†] All typical values are at V_{CC} = 5 V.
[‡] On products compliant to MIL-STD-883, Class B, this parameter does not apply.

§ The parameters IOZH and IOZL include the input leakage current.

¶ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

[#] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.



SN54ABT16862, SN74ABT16862 **20-BIT BUS TRANSCEIVERS** WITH 3-STATE OUTPUTS

SCBS456 - OCTOBER 1992

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)			SN54ABT16862		Г16862	UNIT		
	((001101)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
^t PLH	A or B	B or A								ns
^t PHL		BUIA								
^t PZH	OEAB or OEBA	A B or A								ns
^t PZL										115
^t PHZ	OEAB or OEBA	B or A								ns
^t PLZ	OLAD OF OLDA									113

NOTES: A. CL includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns. C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated