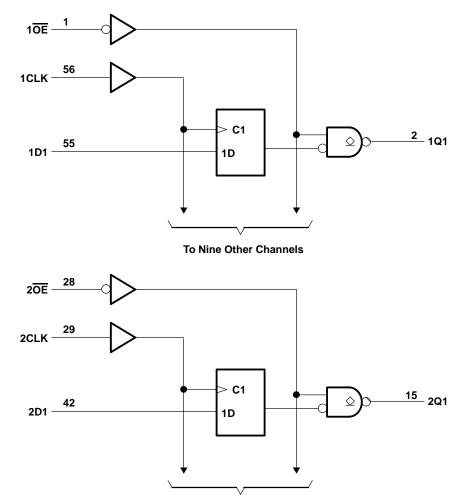
SN74GTL16821 20-BIT FLIP-FLOP WITH GTL I/O LEVELS SCBS265 – JULY 1993

 EPIC-IIB[™] (Enhanced-Performance Implanted CMOS) Submicron Process 	DGG OR DL (TOP)	
 Members of the Texas Instruments Widebus[™] Family 	10E [1 1Q1] 2	56]1CLK
 Provides GTL Signals Levels on Both Inputs and Outputs 	1Q1 [] 2 1Q2 [] 3 GND [] 4	55 1D1 54 1D2 53 GND
 ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 	1Q3 [5 1Q4 [6	52] 1D3 51] 1D4
200 V Using Machine Model (C = 200 pF, R = 0)	V _{CC} [7 1Q5 [8	50 V _{CC} 49 1D5
 Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise 	1Q6 [9 1Q7 [10	48] 1D6 47] 1D7
 Flow-Through Architecture Optimizes PCB Layout 	GND 11 1Q8 12	46 GND 45 1D8
 Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17 	1Q9 [13 1Q10 [14	44 1D9 43 1D10
 Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages 	2Q1 [15 2Q2 [16 2Q3 [17	42 2D1 41 2D2 40 2D3
description	GND [18 2Q4 [19 2Q5 [20	39 GND 38 2D4 37 2D5
The SN74GTL16821 has 20 single-bit flip-flops which are designed to provide terminated GTL logic levels.	2Q6	36 2D6 35 V _{REF} 34 2D7
The device can be used as two 10-bit flip-flops or one 20-bit flip-flop. The 20 flip-flops are edge-triggered D-type flip-flops. The SN74GTL16821 provides true data at the Q outputs on the positive transition of the clock (CLK) input.	2Q8 [24 GND [25 2Q9 [26 2Q10 [27 2OE [28	33] 2D8 32] GND 31] 2D9 30] 2D10 29] 2CLK

The output-enable (\overline{OE}) input can be used to place the outputs in a high state. The output-enable input does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The SN74GTL16821 is available in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN74GTL16821 is characterized for operation from 0°C to 70°C.


	FUNCT (each	ION TA	
	INPUTS		OUTPUT
OE	CLK	D	Q
L	\uparrow	Н	Н
L	\uparrow	L	L
L	L	Х	Q ₀
н	Х	Х	z

EPIC-IIB and Widebus are trademarks of Texas Instruments Incorporated.

SN74GTL16821 20-BIT FLIP-FLOP WITH GTL I/O LEVELS SCBS265 – JULY 1993

logic diagram (positive logic)

To Nine Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)	0.5 V to 4.6 V
Current into any output in the low state, IO	80 mA
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I_{OK} (V _O < 0 or V _O > 0)	±50 mA
Continuous current through V _{CC} or GND pins	
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air): DGG package	1 W
DL package	1 W
Storage temperature range	−65°C to 150°C

⁺ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions

		MIN	NOM	MAX	UNIT
VCC	Supply voltage	3		3.6	V
VREF	Supply voltage	2/3 V _{CC} - 2%	0.8	2/3 V _{CC} + 2%	V
VI	Input voltage	0		VCC	V
VOH	High-level output voltage			3.6	V
VIH	High-level input voltage	V _{REF} +50 mV			V
VIL	Low-level input voltage			V _{REF} – 50 mV	V
Iк	Input clamp current			–18	mA
I _{OL}	Low-level output current			40	mA
TA	Operating free-air temperature	0		70	°C

electrical characteristics over recommended operating free-air temperature range, $V_{REF} = 0.8 V$ (unless otherwise noted)

PARAMETER TEST CONDITIONS		MIN	ι τγρ†	MAX	UNIT		
VIK		V _{CC} = 3 V,	lj = -18 mA			-1.2	V
VOL		V _{CC} = 3 V,	I _{OL} = 40 mA			0.4	V
			$V_I = V_{CC}$			5	
IJ		V _{CC} = 3 V	$V_{I} = 0$			-5	μA
IOH		V _{CC} = 3 V,	V _{OH} = 3.6 V				μA
Icc	Outputs high	V _{CC} = 3 V,	I _O = 0,				mA
	Outputs low	$V_{I} = V_{CC}$ or GND	-				ША
Ci		Per IEEE1194.0-1991			4		pF
Co		Per IEEE1194.0-1991			6		pF

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated