SCBS236B - JUNE 1992 - REVISED JANUARY 1997

- Output Ports Have Equivalent 25-Ω Series Resistors, So No External Resistors Are Required
- State-of-the-Art *EPIC-*II*B*[™] BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical V_{OLP} (Output Ground Bounce) < 1 V at V_{CC} = 5 V, T_A = 25°C
- Typical V_{OLV} (Output Undershoot) < 0.5 V at V_{CC} = 5 V, T_A = 25°C
- Package Options Include Plastic Small-Outline (DW) Package, Ceramic Chip Carriers (FK), and DIPs (JT)

description

These 12-bit buffers and line drivers are designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

The 3-state control gate is a 2-input AND gate with active-low inputs so that if either output-enable $(\overline{OE1} \text{ or } \overline{OE2})$ input is high, all 12 outputs are in the high-impedance state. These devices provide inverted data.

The outputs, which are designed to source or sink up to 12 mA, include equivalent 25- Ω series resistors to reduce overshoot and undershoot.

To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABT5403 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74ABT5403 is characterized for operation from -40° C to 85° C.

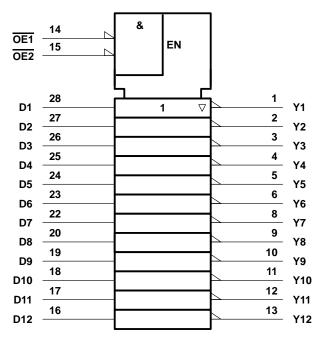
_	FUNCTION TABLE										
	INP	OUTPUT									
OE	1 0	E2	D	Y							
L		L	L	Н							
L		L	Н	L							
н	2	Х	Х	Z							
X	I	Η	Х	Z							

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

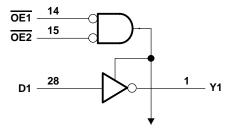
EPIC-IIB is a trademark of Texas Instruments Incorporated.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

	SN74ABT5403 DW PACKAGE (TOP VIEW)									
		,								
г	$\overline{\mathbf{U}}$		n							
Y1 [1	28	D1							
Y2 [2	27	D2							
Y3 [3	26	D3							
Y4 [4	25	D4							
Y5 [5	24	D5							
Y6 [6	23] D6							
GND [7	22] D7							
Y7 [8	21] v _{cc}							
Y8 [9	20] D8							
Y9 [10	19] D9							
Y10 🛛	11	18	D10							
Y11 🛛	12	17	D11							
Y12 🛛	13	16	D12							
OE1	14	15	OE2							


SN54ABT5403 ... JT PACKAGE

SN	SN54ABT5403 FK PACKAGE (TOP VIEW)									
	D4	D5 D6	20	Vcc	D8	6 0				
D3 D2 D1 Y1 Y2 Y3 Y4			1 15	16 8	17 -	25 24 23 22 21 20 19		D10 D11 D12 DE2 DE1 Y12 Y11		


Copyright © 1997, Texas Instruments Incorporated

SCBS236B - JUNE 1992 - REVISED JANUARY 1997

logic symbol[†]

logic diagram (positive logic)

To 11 Other Channels

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for the DW and JT packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high or power-off state, V_{O}	
Current into any output in the low state, IO	
Input clamp current, I _{IK} (V _I < 0)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	
Package thermal impedance, θ _{JA} (see Note 2): DW package	
Storage temperature range, T _{stg}	–65°C to 150°C

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

SCBS236B - JUNE 1992 - REVISED JANUARY 1997

recommended operating conditions (see Note 3)

			SN54AE	BT5403	SN74ABT5403		UNIT
			MIN	MAX	MIN	MAX	UNIT
V _{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	High-level input voltage		2	15	2		V
VIL	Low-level input voltage		0.8		0.8	V	
VI	Input voltage	0	Vcc	0	VCC	V	
ЮН	High-level output current		UC VC	-12		-12	mA
IOL	Low-level output current			12		12	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled	2	10		10	ns/V
Т _А	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		Т	T _A = 25°C			SN54ABT5403		SN74ABT5403		
FAI	RAMEIER	TESTCON	IDITIONS	MIN	TYP†	MAX	MIN	MAX	MIN	MAX	UNIT	
VIK		V _{CC} = 4.5 V,	l _l = –18 mA			-1.2		-1.2		-1.2	V	
		V _{CC} = 4.5 V,	I _{OH} = -1 mA	3.35	3.7		3.3		3.35			
VOH		V _{CC} = 5 V,	I _{OH} = -1 mA	3.85	4.2		3.8		3.85		V	
		V _{CC} = 4.5 V	I _{OH} = -3 mA				3		3.1		v	
		VCC = 4.5 V	I _{OH} = -12 mA	2.6					2.6			
Val		V _{CC} = 4.5 V	I _{OL} = 8 mA					0.8		0.65	v	
V _{OL}		VCC = 4.3 V	I _{OL} = 12 mA							0.8	v	
V _{hys}					100						mV	
Ц		V _{CC} = 5.5 V,	$V_I = V_{CC}$ or GND			±1		±1		±1	μA	
IOZH		V _{CC} = 5.5 V,	V _O = 2.7 V			50		50		50	μA	
IOZL		V _{CC} = 5.5 V,	$V_{O} = 0.5 V$			-50		-50		-50	μA	
l _{off}		$V_{CC} = 0,$	$V_{I} \text{ or } V_{O} \leq 4.5 \text{ V}$			±100		3F		±100	μA	
ICEX		V _{CC} = 5.5 V, V _O = 5.5 V	Outputs high			50	102	50		50	μA	
lO		V _{CC} = 5.5 V,	V _O = 2.5 V	-25	-45	-100	25	-100	-25	-100	mA	
los‡		V _{CC} = 5.5 V,	VO = 0	-50		-200	2 -50	-200	-50	-200	mA	
		$V_{CC} = 5.5 V,$ $I_{O} = 0,$	Outputs high		5	50		50		50	μA	
ICC			Outputs low		36	45		45		45	mA	
		$V_{I} = V_{CC}$ or GND	Outputs disabled		1	50		50		50	μA	
	Data inputs	One in	$V_{CC} = 5.5 V$, One input at 3.4 V,	Outputs enabled			1.5		1.5		1.5	
∆I _{CC} §		Other inputs at V _{CC} or GND	Outputs disabled			0.05		0.05		0.05	mA	
	Control inputs	$V_{CC} = 5.5 V$, One input at 3.4 V, Other inputs at V_{CC} or GND				1.5		1.5		1.5		
Ci		V _I = 2.5 V or 0.5 V			3						pF	
Co		V _O = 2.5 V or 0.5 V			8						pF	

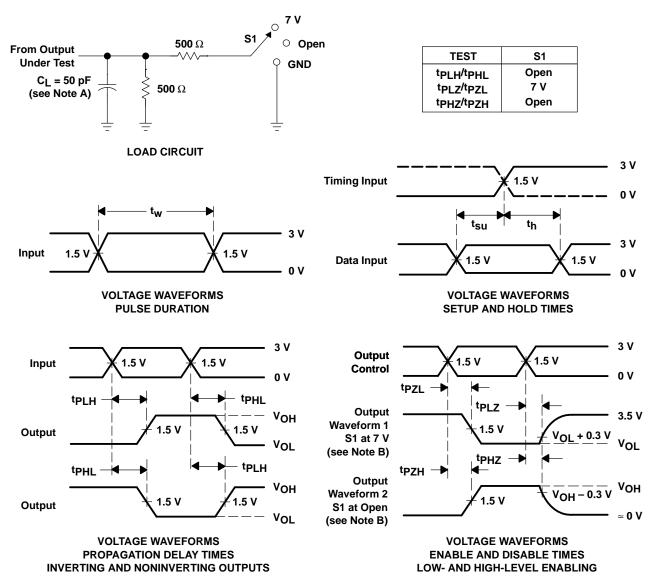
[†] All typical values are at V_{CC} = 5 V.

[‡]Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SCBS236B - JUNE 1992 - REVISED JANUARY 1997


switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO V _{CC} = 5 (OUTPUT) T _A = 25		C = 5 V = 25°C	', ;	SN54ABT5403		SN74ABT5403		UNIT	
		(001101)	MIN	TYP	MAX	MIN	МАХ	MIN	MAX		
^t PLH	D		Y	2	4.5	6.1	2	47	2	6.9	
^t PHL		I	1.5	4.4	5.2	1.5	5.9	1.5	5.7	ns	
^t PZH	ŌE	V	2.5	5.7	6.6	2.5	8.6	2.5	8.5		
^t PZL		T	2	4.4	5.5	3)	6.9	2	6.8	ns	
^t PHZ	OE	v	1.5	3.6	4.4	1 .5	5.5	1.5	5.2		
^t PLZ	0E	T	1.5	4.2	5.4	2 1.5	7.4	1.5	6.9	ns	

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SCBS236B - JUNE 1992 - REVISED JANUARY 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 n

D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated