SN54ABTE16246, SN74ABTE16246 11-BIT INCIDENT-WAVE SWITCHING BUS TRANSCEIVERS WITH 3-STATE AND OPEN-COLLECTOR OUTPUTS SCB5227E – JULY 1993 – REVISED MARCH 1997

SN54ABTE16246 WD PACKAGE SN74ABTE16246 DGG OR DL PACKAGE (TOP VIEW)
11 0E 1 48 V _{CC} BIAS 11DIR 2 47 11A 11B 3 46 10DIR
GND
9B [] 6 43]] 9A V _{CC} [] 7 42]] V _{CC} 8BI [] 8 41 [] 9DIR
8BO 9 40 8A GND 10 39 GND
7BO [] 11 38 [] 7A 6BI [] 12 37 [] 7BI 6BO [] 13 36 [] 6A
5BO [14 35] 5A GND [15 34] GND
4BO [16 33] 5BI 4BI [17 32] 4A
V _{CC} [] 18 31 [] V _{CC} 3BO [] 19 30 [] 3A 2BI [] 20 29 [] 3BI
GND 21 28 GND 2BO 22 27 2A 1BO 23 26 1A 1BI 24 25 OE

description

The 'ABTE16246 are 11-bit noninverting transceivers designed for asynchronous two-way communication between buses. These devices have open-collector and 3-state outputs. They allow data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated. When \overline{OE} is low, the device is active.

The B port has an equivalent $25-\Omega$ series output resistor to reduce ringing. Active bus-hold inputs on the B port hold unused or floating inputs at a valid logic level.

The A port provides for the precharging of the outputs via $V_{CC}BIAS$, which establishes a voltage between 1.3 V and 1.7 V when V_{CC} is not connected.

The SN54ABTE16246 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74ABTE16246 is characterized for operation from -40° C to 85° C.

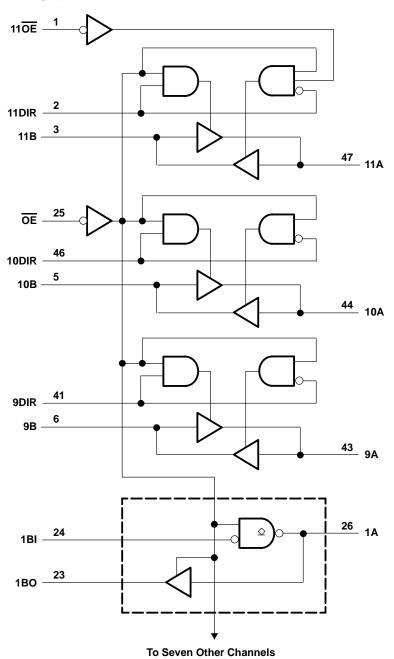
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus and EPICII-B are trademarks of Texas Instruments Incorporated.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1997, Texas Instruments Incorporated

SN54ABTE16246, SN74ABTE16246 11-BIT INCIDENT-WAVE SWITCHING BUS TRANSCEIVERS WITH 3-STATE AND OPEN-COLLECTOR OUTPUTS SCBS227E - JULY 1993 - REVISED MARCH 1997


	FUNCTION TABLE													
		INPUTS			OPERATION									
OE	9DIR	10DIR	11DIR	11 0 E	OFERATION									
Н	Х	Х	Х	Х	Isolation									
L	Х	х	х	Х	1BI–8BI data to 1A–8A bus (OC [†]), 1A–8A data to 1BO–8BO bus									
L	L	Х	Х	х	9A data to 9B bus									
L	н	Х	Х	х	9B data to 9A bus									
L	Х	L	Х	х	10A data to 10B bus									
L	Х	Н	Х	х	10B data to 10A bus									
L	Х	Х	L	L	11A data to 11B bus									
L	х	Х	L	Н	11A, 11B isolation									
L	Х	Х	Н	Х	11B data to 11A bus									

[†]OC = Open-collector outputs

SCBS227E - JULY 1993 - REVISED MARCH 1997

logic diagram (positive logic)

SCBS227E - JULY 1993 - REVISED MARCH 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (except I/O ports) (see Note 1) Voltage range applied to any output in the high or power-off state, V _O Current into any output in the low state, I _O Input clamp current, I _{IK} (V _I < 0) Output clamp current, I _{OK} (V _O < 0)	0.5 V to 7 V 0.5 V to 5.5 V 128 mA 18 mA 50 mA
Package thermal impedance, θ_{JA} (see Note 2): DGG package	89°C/W
DL package	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

recommended operating conditions (see Note 3)

			SN54	SN54ABTE16246			SN74ABTE16246		
		MIN NOM MAX MIN NOM		NOM	MAX	UNIT			
VCC	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
V	High lovel input veltage	OE	2			2			V
VIH	High-level input voltage	Except OE	1.6			1.6			v
V		OE			0.8			0.8	V
VIL	Low-level input voltage	Except OE		A.	1.4			1.4	v
VOH	High-level output voltage	1A–8A		PP1	5.5	0		5.5	V
VI	Input voltage		0	5	VCC	0		VCC	V
1		B bus	4	50	-12			-12	mA
ЮН	High-level output current	9A–11A	00		-24			-64	mA
1		B bus	Q		12			12	
IOL	Low-level output current	A bus		64				90	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled			10			10	ns/V
Т _А	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: Unused pins (input or A-bus I/O) must be held high or low to prevent them from floating.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SCBS227E - JULY 1993 - REVISED MARCH 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TERTO	SN	54ABTE1	6246	SN	74ABTE1	6246				
PA	AMEIER	TEST CONDITIONS		MIN TYP [†]		MAX	(MIN	TYP†	MAX	UNI		
VIK		V _{CC} = 4.5 V,	lı = –18 mA			-1.2			-1.2	V		
		V _{CC} = 5.5 V,	I _{OH} = -100 μA			V _{CC} -0.2			V _{CC} -0.2			
	B port	V _{CC} = 4.5 V	I _{OH} = -1 mA	2.4			2.4					
Vari		$v_{\rm CC} = 4.5 v$	$I_{OH} = -12 \text{ mA}$	2			2			v		
∨он		V _{CC} = 5.5 V,	I _{OH} = -1 mA			4.5			4.5	v		
	9A–11A	V _{CC} = 4.5 V	I _{OH} = -32 mA	2.4			2.4					
		VCC = 4.5 V	I _{OH} =64 mA				2					
ЮН	1A–8A	$V_{CC} = 4.5 V,$	V _{OH} = 5.5 V			20			20	μA		
	P port	VCC = 4.5 V	I _{OL} = 1 mA			0.4			0.4			
Vai	B port	VCC = 4.5 V	I _{OL} = 12 mA						0.8			
VOL	A port	V _{CC} = 4.5 V	I _{OL} = 64 mA			0.55			0.55	v		
	Apon	VCC = 4.5 V	I _{OL} = 90 mA			M			0.9			
V _{hys}			-		100 🔊			100		m۷		
I _{I(hold)} B port	V _{CC} = 4.5 V	V _I = 0.8 V	100	PP.		100						
	B port	VCC = 4.5 V	V _I = 2 V	-100	6		-100			μA		
		V _{CC} = 5.5 V,	$V_{I} = 0$ to 5.5 V		n	±500			±500			
i.	Control inputs			4	0	±1			±1	۸		
l	A or B ports	$V_{CC} = 5.5 V$, $V_{I} = V_{CC} \text{ or GND}$		or B ports				±20			±20	μA
lozн‡	9A–11A	V _{CC} = 5.5 V,	V _O = 2.7 V			10			10	μA		
lozl‡	9A–11A	V _{CC} = 5.5 V,	V _O = 0.5 V			-10			-10	μA		
	A port	V _{CC} = 5.5 V,	VO = 5.7 v	-50	-120	-180	-50		-180	mA		
10	B port	VCC = 3.3 V,	V() = 2.3 V	-25	-52	-90	-25		-90	IIIA		
l _{off}		V_{CC} = 0, V_{I} or $V_{O} \le$	4.5 V, V _{CC} BIAS = 0			±100			±100	μA		
		V _{CC} = 5.5 V,	Outputs high		28	36		28	36			
I _{CC} A or B	A or B ports	$I_{O} = 0,$	Outputs low		38	48		38	48	mA		
		$V_{I} = V_{CC}$ or GND	Outputs disabled		20	32		20	32			
	A or B ports	V _{CC} = 5 V,	OE high		0.02			0.02		mA		
ICCD		CL = 50 pF	OE low		0.33			0.33		MH		
C _i	Control inputs	V _I = 2.5 V or 0.5 V			2.5	4		2.5	4	pF		
C _{io}	I/O ports	V _O = 2.5 V or 0.5 V			4.5	8		4.5	8	pF		

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.

[‡] The parameters I_{OZH} and I_{OZL} include the input leakage current.

SCBS227E - JULY 1993 - REVISED MARCH 1997

live-insertion specifications over recommended operating free-air temperature range

PARAMETER			SN54	ABTE16	6246	SN74	UNIT				
FARA	NEIER	TEST CONDITIONS			MIN	түр†	MAX	MIN	TYP†	MAX	UNIT
	$V_{CC} = 0 \text{ to } 4.5 \text{ V},$ $V_{CC} BIAS = 4.5 \text{ V to } 5.5 \text{ V}, I_{O(DC)} = 0$					250	700		250	700	
	Спис	V _{CC} = 4.5 V to 5.5 V [‡] , V _{CC} BIAS = 4.5 V to 5.5 V, I _{O(DC)} = 0				20 20		μA			
Va			$V_{CC}BIAS = 4.5 V \text{ to } 5.5 V$		1.1	01.5	1.9	1.1	1.5	1.9	V
Vo	A port	$V_{CC} = 0$	$V_{CC}BIAS = 4$	1.3	1.5	1.7	1.3	1.5	1.7	v	
		V	V _O = 0,	$V_{CC}BIAS = 4.5 V$	-20		-100	-20		-100	۵
10	IO A port	A port $V_{CC} = 0$ $V_{O} = 3 V$, $V_{CC} BIAS = 4.5 V$		20		100	20		100	μA	

[†] All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

 $V_{CC} = 0.5 V < V_{CC} BIAS$

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V(T	CC = 5 \ A = 25°C	/ ;	SN54ABT	E16246	SN74ABTI	E16246	UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
^t PLH	A	В	1.5	3.1	4.2	1.5	5.4	1.5	5.2	ns
^t PHL	A	В	1.5	3.5	4.6	1.5	5.4	1.5	5.2	115
^t PLH	9B–11B	9A–11A	1.5	3	3.8	1.5	4.7	1.5	4.5	ns
^t PHL	9D-11D	9A-11A	1.5	3.2	4	1.5	4.7	1.5	4.5	115
t _{PLH} §			1.5	3.2	4	1.5	4.7	1.5	4.5	
t₽LH [¶]	1B–8B	1A–8A	7.5	8.9	9.7	7.5	\$10.6	7.5	10.3	ns
^t PHL			1.5	3.2	4	1.5	ž 4.7	1.5	4.5	
^t PZH		9A–11A	2	4.3	5.3	2	6.4	2	6.2	
^t PZL	OE	1A–11A	2	4.4	5.4	2	7	2	6.8	ns
^t PZH	OE	В	2	4.3	6	<u>2</u>	7.3	2	7.1	ns
^t PZL	0E	Б	2	4.5	6.4	Q 2	7.5	2	7.3	115
^t PHZ	OE	9A–11A	2	4.2	5.9	2	7	2	6.7	
^t PLZ	UE	1A–11A	2	3.5	4.6	2	5.4	2	5.1	ns
^t PHZ	OE	P	2.5	4.3	6.2	2.5	7.2	2.5	7	
^t PLZ		В	2	3.6	5	2	5.8	2	5.5	ns

 $\$ Measurement point is V_{OL} + 0.3 V.

¶ Measurement point is V_{OL} + 1.5 V.

SCBS227E - JULY 1993 - REVISED MARCH 1997

extended switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Note 4 and Figure 2)

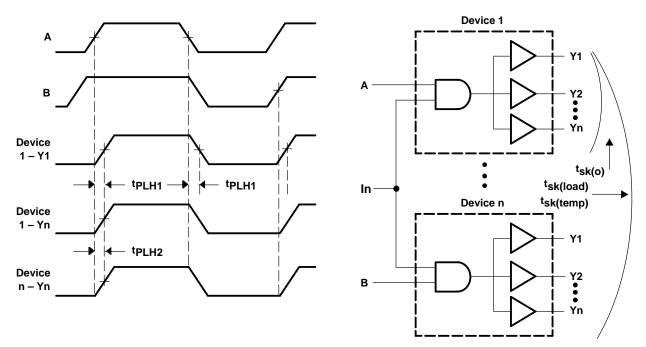
PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD		CC = 5 \ A = 25°C		SN54ABT	E16246	SN74ABT	E16246	UNIT	
	(INFOT)	(001-01)		MIN	TYP	MAX	MIN	MAX	MIN	MAX		
^t PLH	9B–11B	9A–11A	By = 12.0	1.5	3.2	4	1.5	5	1.5	4.8	ns	
^t PHL	90-110	9A-11A	Rχ = 13 Ω	1.5	3.8	4.7	1.5	5.8	1.5	5.6	115	
^t PHL	1B–8B	1A–8A	Rχ = 13 Ω	1.5	3.3	4.2	1.5	5	1.5	4.8	ns	
^t PLH	9B–11B	04 114	$\mathbf{P}_{\mathbf{V}} = 26 \mathbf{O}$	1.5	3.1	4	1.5	4.8	1.5	4.6		
^t PHL	9D-11D	3–11B 9A–11A	Rχ = 26 Ω	1.5	3.5	4.4	1.5	5.2	1.5	4.9	ns	
^t PHL	1B–8B	1A–8A	Rχ = 26 Ω	1.5	3.1	4	1.5	4.6	1.5	4.4	ns	
^t PLH	9B–11B	00.440	44.04		1.5	3	3.8	1.5	A.7	1.5	4.5	
^t PHL		1A–8A	Rχ = 56 Ω	1.5	3.3	4.2	1.5	5.1	1.5	4.7	ns	
^t PHL	1B–8B	1A–8A	Rχ = 56 Ω	1.5	3	4	1.5	4.6	1.5	4.4	ns	
	В	А	Rχ = Open		0.1	0.6	200	2		2		
^t sk(p)	A	В			0.4	0.8	40	2		2	ns	
	В	A	Rχ = 26 Ω		0.3	0.8	1	2		2		
	В	A	Rχ = Open		0.3	0.7		1.3		1.3		
^t sk(o)	А	В			0.7	1.1		1.3		1.3	ns	
. ,	B A	A	R _X = 26 Ω		0.5	1		1.3		1.3		
t _t †	В	А	Rχ = 26 Ω	0.5	0.8	1.5	0.5	1.5	0.5	1.5	ns	
tt‡	A	В	Rise or fall time 10%–90%	3.5	5.5	7.3	3.5	8.1	3.5	7.9	ns	

 † t_t is measured between 1 V and 2 V of the output waveform.

 t_{t} is measured between 10% and 90% of the output waveform.

NOTE 4: Limits are specified but not production tested.

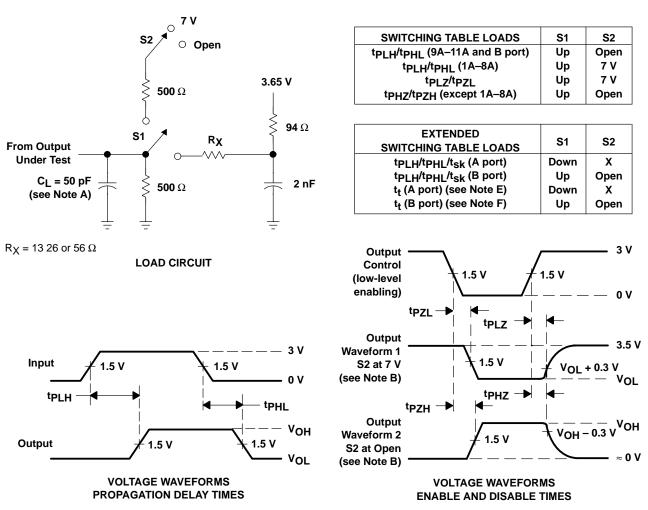
extended output characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (see Note 4 and Figures 1 and 2)


PARAMETER FROM TO TEST CONDITIO		TEST CONDITIONS	LOAD	SN54ABTE16246	SN74ABTE16246	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	LOAD	MIN MAX	MIN MAX	UNIT
• • • • •	А	В	V _{CC} = constant,		3	2.5	
^t sk(temp)	В	А	$\Delta T_A = 20^{\circ}C$	Rχ = 56 Ω	4.5	4	ns
^t sk(load)	В	А	V _{CC} = constant, Temperature = constant	R_{χ} = 13, 26, or 56 Ω	4.5	4	ns

NOTE 4: Limits are specified but not production tested.

SCBS227E - JULY 1993 - REVISED MARCH 1997

PARAMETER MEASUREMENT INFORMATION



- NOTES: A. Pulse skew, tsk(p), is defined as the difference in propagation delay times tpLH1 and tpHL1 on the same terminal at identical operating conditions.
 - B. Output skew, t_{Sk(0)}, is defined as the difference in propagation delay of the fastest and slowest paths on a single device that
 - originate at either a single input or multiple simultaneously switched inputs (e.g., $|t_{PLH1} t_{PLH2}|$). C. Temperature skew, $t_{sk(temp)}$, is the output skew of two devices, both having the same value of V_{CC} ± 1% and with package temperature differences of 20°C.
 - D. Load skew, $t_{sk(load)}$, is measured with R_X in Figure 2 at 13 Ω for one unit and 56 Ω for the other unit.

Figure 1. Voltage Waveforms for Extended Characteristics

SCBS227E - JULY 1993 - REVISED MARCH 1997

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. Cl includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tt is measured between 1 V and 2 V of the output waveform.
 - F. tt is measured between 10% and 90% of the output waveform.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated