SCBS224A - NOVEMBER 1991 - REVISED JANUARY 1994

- Compatible With IEEE 1194.1-1991 (BTL) and IEEE 896.2-1991 (Futurebus+) Standards
- TTL A Port, Backplane Transceiver Logic B Port
- Open-Collector B-Port Outputs Sink 100 mA
- Minimum B-Port Edge Rate = 2 ns
- Isolated Logic-Ground and Bus-Ground Pins Reduce Noise

- BIAS V_{CC} Pin Minimizes Signal Distortion During Live Insertion/Withdrawal
- Packaged in Plastic Quad-Flat Packages (RC) With 0.65-mm Pin Pitches
- B-Port Biasing Network Preconditions the Connector and PC Trace to the Backplane Transceiver Logic High-Level Voltage

description

The SN74FB2043 is a 7-bit transceiver designed to translate signals between TTL and backplane transceiver logic (BTL) environments. It is specifically designed to be compatible with IEEE 1194.1-1991 (BTL) and IEEE 896.2-1991 (Futurebus+) standards.

The B port operates at BTL-signal levels. The open-collector B ports are specified to sink 100 mA and have minimum output edge rates of 2 ns. Two output enables, OEB and \overline{OEB} , are provided for the B outputs. When OEB is high and \overline{OEB} is low, the B port is active and reflects the data present at the A-input pins. When OEB is low, \overline{OEB} is high, or V_{CC} is typically less than 2.5 V, the B port is turned off. The enable/disable logic partitions the device as two 3-bit sections and one 1-bit section.

The A port operates at TTL-signal levels and has split input and output pins. The A outputs reflect the data at the B port when the A-port output enable, OEA, is high. When OEA is low or when V_{CC} is typically less than 2.5 V, the A outputs are in the high-impedance state.

Pins are allocated for the four-wire IEEE 1149.1 (JTAG) test bus, which will be implemented in a future version of the SN74FB2043. Currently TMS and TCK are not connected and TDI is shorted to TDO.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SCBS224A - NOVEMBER 1991 - REVISED JANUARY 1994

description (continued)

BIAS V_{CC} establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when V_{CC} is not connected. The SN74FB2043 is characterized for operation from 0°C to 70°C.

FUNCTION TABLE							
INPUTS			FUNCTION				
OEB	OEB	OEA	FUNCTION				
L X	X H	L L	Isolation				
L X	X H	H H	B data to AO bus				
Н	L	L	AI data to B bus				
Н	L	Н	AI data to B bus, B data to AO bus				

logic symbol[†]

OEB	46		G1				
10EA	47		EN2				
_	45	~					
10EB	20		1EN3				
20EA	25		EN4				
2 <mark>0EB</mark>	24		1EN5				
30EA			EN6				
3OEB	26		1EN7				
	50					40	
1AO1	51	•	∇2	1		 	1B1
1AI1	52				3 û	38	
2AO1	2	•	⊽4	1		 	2B1
2AI1	4				5 ☆	36	
2AO2	3	-				 	2B2
2AI2	6					34	
2AO3	8	-				 	2B3
2AI3	10					32	
3AO1	9	•	∇6	1		 	3B1
3AI1	12				7 ♀	30	
3AO2	14	-				 	3B2
3AI2	16					 28	
3AO3	18					 	3B3
3AI3							

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SCBS224A - NOVEMBER 1991 - REVISED JANUARY 1994

functional block diagram

SCBS224A - NOVEMBER 1991 - REVISED JANUARY 1994

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range: (except B port)	–1.2 V to 7 V
(B port)	–1.2 V to 5.5 V
Input current range (except B port)	–18 mA to 5 mA
Voltage range applied to any B output in the disabled or power-off state	0.5 V to 5.5 V
Voltage range applied to any output in the high state	$\dots \dots -0.5$ V to V _{CC}
Current applied to any single output in the low state: (AO port)	
(B port)	200 mA
Storage temperature range	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 1)

			MIN	NOM	MAX	UNIT	
V _{CC} , BIAS V _{CC}	Supply voltage		4.5	5	5.5	V	
VIH	High lovel input veltage	B port	1.62			V	
	High-level input voltage	Except B port	2			v	
Ma		B port			1.47	V	
VIL	Low-level input voltage	Except B port			0.8	v	
IК	Input clamp current				-18	mA	
IOH	High-level output current	AO port			-3	mA	
le.		AO port			24	~ ^	
IOL	Low-level output current B port				100	mA	
T _A	Operating free-air temperature		0		70	°C	

NOTE 1: Unused or floating pins (input or I/O) must be held high or low.

SCBS224A - NOVEMBER 1991 - REVISED JANUARY 1994

PARAMETER	TEST CONDITIONS			түр†	MAX	UNIT
B port	V _{CC} = 4.5 V,	lj = –18 mA			-1.2	V
Except B port	V _{CC} = 4.5 V,	I _I = -40 mA			-0.5	V
√ _{OH} AO port	V _{CC} = 4.5 V	I _{OH} = -1 mA				V
AO pon		I _{OH} = -3 mA	2.5	3.3		V
AQ port	$\lambda = 45 \lambda$	I _{OL} = 20 mA				
AO poir	VCC = 4.3 V	I _{OL} = 24 mA		0.35	0.5	V
Phort		I _{OL} = 80 mA	0.75		1.1	
	VCC = 4.5 V	I _{OL} = 100 mA				
Except B port	V _{CC} = 5.5 V,	V _I = 5.5 V			50	μA
Except B port	V _{CC} = 5.5 V,	V _I = 2.7 V			50	μΑ
Except B port		V _I = 0.5 V			-50	
B port [†]	vCC = 5.5 v	V _I = 0.75 V			-100	μA
B port	$V_{CC} = 0$ to 5.5 V,	V _O = 2.1 V			100	μA
AO port	V _{CC} = 5.5 V,	V _O = 2.7 V			50	μA
AO port	V _{CC} = 5.5 V,	V _O = 0.5 V			-50	μA
AO port	V _{CC} = 5.5 V,	V _O = 0	- 30		-150	mA
AI port to B port				25 60		
B port to AO port	V _{CC} = 5.5 V,	IO = 0				mA
Outputs disabled						
AI port and control inputs	$V_I = V_{CC}$ or GND					pF
AO port	$V_{O} = V_{CC}$ or GND					pF
D nort nor D1104.0	$V_{CC} = 0 \text{ to } 4.5 \text{ V}$				6	~F
b port per P1194.0	V _{CC} = 4.5 V to 5.5 V				5	pF
	B port Except B port AO port AO port B port Except B port Except B port Except B port B port [†] B port AO port AO port AO port B port B port AO port AO port AO port AO port AO port AO port AI port to B port Outputs disabled AI port and control inputs	B port $V_{CC} = 4.5 \text{ V},$ Except B port $V_{CC} = 4.5 \text{ V},$ AO port $V_{CC} = 4.5 \text{ V},$ AO port $V_{CC} = 4.5 \text{ V},$ B port $V_{CC} = 4.5 \text{ V},$ B port $V_{CC} = 4.5 \text{ V},$ Except B port $V_{CC} = 5.5 \text{ V},$ Except B port $V_{CC} = 5.5 \text{ V},$ Except B port $V_{CC} = 5.5 \text{ V},$ B port [†] $V_{CC} = 5.5 \text{ V},$ B port $V_{CC} = 5.5 \text{ V},$ AO port $V_{CC} = 5.5 \text{ V},$ AI port to B port $V_{CC} = 5.5 \text{ V},$ AI port to AO port $V_{CC} = 5.5 \text{ V},$ AI port and control inputs $V_{I} = V_{CC} \text{ or GND}$ AO port $V_{O} = V_{CC} \text{ or GND}$ AO port $V_{O} = V_{CC} \text{ or GND}$ B port per P1194 0 $V_{CC} = 0 \text{ to } 4.5 \text{ V}$	B port $V_{CC} = 4.5 \text{ V}$, $I_I = -18 \text{ mA}$ Except B port $V_{CC} = 4.5 \text{ V}$, $I_I = -40 \text{ mA}$ AO port $V_{CC} = 4.5 \text{ V}$ $I_{OH} = -1 \text{ mA}$ AO port $V_{CC} = 4.5 \text{ V}$ $I_{OL} = -3 \text{ mA}$ B port $V_{CC} = 4.5 \text{ V}$ $I_{OL} = 20 \text{ mA}$ B port $V_{CC} = 4.5 \text{ V}$ $I_{OL} = 80 \text{ mA}$ B port $V_{CC} = 5.5 \text{ V}$, $V_I = 5.5 \text{ V}$ Except B port $V_{CC} = 5.5 \text{ V}$, $V_I = 2.7 \text{ V}$ Except B port $V_{CC} = 5.5 \text{ V}$, $V_I = 0.5 \text{ V}$ B port [†] $V_{CC} = 0 \text{ to } 5.5 \text{ V}$, $V_I = 0.75 \text{ V}$ B port $V_{CC} = 0 \text{ to } 5.5 \text{ V}$, $V_O = 2.1 \text{ V}$ AO port $V_{CC} = 5.5 \text{ V}$, $V_O = 2.7 \text{ V}$ AO port $V_{CC} = 5.5 \text{ V}$, $V_O = 0.5 \text{ V}$ AO port $V_{CC} = 5.5 \text{ V}$, $V_O = 0.5 \text{ V}$ AO port $V_{CC} = 5.5 \text{ V}$, $V_O = 0.5 \text{ V}$ AO port $V_{CC} = 5.5 \text{ V}$, $V_O = 0.5 \text{ V}$ AO port $V_{CC} = 5.5 \text{ V}$, $V_O = 0$ AI port to B port $V_{CC} = 5.5 \text{ V}$, $I_O = 0$ AI port and control inputs $V_I = V_{CC} \text{ or GND}$ $V_O = V_{CC} \text{ or GND}$ AO port $V_O = V_{CC} \text{ or GND}$ $V_{CC} = 0 \text{ to } 4.5 \text{ V}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c } B \mbox{ port } & V_{CC} = 4.5 \ V, & I_{I} = -18 \ mA \\ \hline Except B \mbox{ port } & V_{CC} = 4.5 \ V, & I_{I} = -40 \ mA \\ \hline & I_{OH} = -1 \ mA \\ \hline & I_{OH} = -3 \ mA & 2.5 \ 3.3 \\ \hline & I_{OH} = -3 \ mA & 2.5 \ 3.3 \\ \hline & I_{OL} = 20 \ mA \\ \hline & I_{OL} = 100 \ mA$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. [‡] For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current. § Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

SCBS224A - NOVEMBER 1991 - REVISED JANUARY 1994

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	VC TA	V _{CC} = 5 V, T _A = 25°C			мах	UNIT		
	(INFOT)	(001F01)	MIN	TYP	MAX					
^t PLH	AI	В		4				ns		
^t PHL		b		3.5						
^t PLH	в	AO		3.7				ns		
^t PHL	D	70		3.8				115		
^t PLH	OEB	В		4.7				ns		
^t PHL	OED	D		4				115		
^t PLH	OEB	В		4.4				ns		
^t PHL	OLB	D		3.7				113		
^t PZH	OEA	AO		2.9				ns		
^t PZL	ULA	A0		2.7				113		
^t PHZ	OEA	AO		3.3				ns		
^t PLZ	ULA	AO		2.5				113		
^t sk(p)	Skew for any single channel t _{PHL} – t _{PLH}	AI to B or B to AO					0.75	ns		
^t sk(o)	Skew between drivers in the same package	AI to B or B to AO		1	1.5		2	ns		
tt	Transition time, B outputs (1.3 V to 1.8 V)			2		1	3	ns		
^t PR	B-port input pulse rejection					1		ns		

PRODUCT PREVIEW

live insertion specifications over recommended operating free-air temperature range

PARAM	ETER	TEST CONDITIONS				TYP	MAX	UNIT
		$V_{CC} = 0$ to 4.5 V,	$V_{B} = 0$ to 2 V	VI (BIAS V _{CC}) = 4.5 V to 5.5 V			450	۸
		V_{CC} = 4.5 to 5.5 V,	vB = 0 10 2 v				10	μA
Vo	B port	$V_{CC} = 0,$	V_{I} (BIAS V_{CC}) = 4.5 V to 5.5 V				2.1	V
		$V_{CC} = 0$,	V _B = 1 V,	V_{I} (BIAS V_{CC}) = 4.5 V to 5.5 V	-1			
IO B port		$V_{CC} = 0$ to 5.5 V,	OEB = 0 to 0.8 V				100	μA
		$V_{CC} = 0$ to 2.2 V,	OEB = 0 to 5 V				100	

SCBS224A - NOVEMBER 1991 - REVISED JANUARY 1994

B. All input pulses are supplied by generators having the following characteristics: TTL Inputs - PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, tf \leq 2.5 ns. BTL Inputs - PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.

- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. The outputs are measured one at a time with one transition per measurement.

PRODUCT PREVIEW

PRODUCT PREVIEV

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated