SN54ABT16828, SN74ABT16828 **20-BIT BUFFERS/DRIVERS** WITH 3-STATE OUTPUTS SCBS221 - OCTOBER 1992

 Members of the Texas Instruments Widebus™ Family 	SN74ABT16		. WD PACKAGE DL PACKAGE /IEW)		
 State-of-the-Art EPIC-IIB ™ BiCMOS Design Significantly Reduces Power Dissipation 	10E1		56 10E2		
 Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17 	1Y1 [1Y2 [2 5	55] 1A1 54] 1A2		
 Typical V_{OLP} (Output Ground Bounce) < 1 V at V_{CC} = 5 V, T_A = 25°C 	GND [1Y3 [4 5	53 GND 52 1A3		
 Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise 	1Y4 [V _{CC} [6 5	51 A14 50 V _{CC}		
 Flow-Through Architecture Optimizes PCB Layout 	1Y5 [1Y6 [8 4 9 4	19] 1A5 18] 1A6		
 High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OI}) 	1Y7 GND	11 4	17 1A7 16 GND		
 Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil 	1Y8 [1Y9 [13 4	15 1A8 14 1A9		
Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings	1Y10 [2Y1 [2Y2 [15 4	43 1A10 42 2A1 41 2A2		
description	2Y3 [GND [17 4	40 2A3 39 GND		
The 'ABT16828 is an inverting 20-bit buffer composed of two 10-bit sections with separate	2Y4 [2Y5 [19 3	38 2A4 37 2A5		
output-enable signals. For either 10-bit buffer	2Y6 🛛	21 3	36 2A6		
section, the two output-enable $(1\overline{OE1} \text{ and } 1\overline{OE2} \text{ or } 2\overline{OE1} \text{ and } 2\overline{OE2})$ inputs must both be low for the	V _{CC} [2Y7 [23 3	35 V _{CC} 34 2A7		
corresponding Y outputs to be active. If either output-enable input is high, the outputs of that 10-bit buffer section are in the high-impedance	2Y8 [GND [2Y9 [25 3	33 2A8 32 GND 31 2A9		

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

state.

0 7 ר 2Y10 27 30 2A10 28 29 20E2 20E1

PRODUCT PREVIEW

The SN74ABT16828 is available in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT16828 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABT16828 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE (each 10-bit section)								
	INPUTS	OUTPUT						
OE1	OE2	Α	Y					
L	L	L	н					
L	L	Н	L					
н	Х	Х	Z					
Х	Н	Х	Z					

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

Copyright © 1992, Texas Instruments Incorporated

SN54ABT16828, SN74ABT16828 20-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCBS221 - OCTOBER 1992

logic symbol[†]

logic diagram (positive logic)

To Nine Other Channels

To Nine Other Channels

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

Supply voltage range, V_{CC}	V V nA nA
Input clamp current, I _{IK} (V _I < 0) –18 m	
Output clamp current, I_{OK} (V _O < 0)	
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air)1Storage temperature range $-65^{\circ}C$ to 150°	

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

SN54ABT16828, SN74ABT16828 20-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCBS221 - OCTOBER 1992

recommended operating conditions (see Note 2)

			SN54AB	T16828	SN74AE	T16828	UNIT	
			MIN	MAX	MIN	MAX		
VCC	Supply voltage		4.5	5.5	4.5	5.5	V	
VIH	High-level input voltage		2		2		V	
VIL	Low-level input voltage			0.8		0.8	V	
VI	Input voltage		0	VCC	0	VCC	V	
ЮН	High-level output current			-24		-32	mA	
IOL	Low-level output current			48		64	mA	
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V	
TA	Operating free-air temperature		-55	125	-40	85	°C	

NOTE 2: Unused or floating inputs must be held high or low.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	TEAT CONDITIONS		T _A = 25°C			SN54ABT16828		SN74ABT16828					
PARAMETER	TEST CONDITIONS			MIN	түр†	MAX	MIN	MAX	MIN	MAX	UNIT		
VIK	V _{CC} = 4.5 V,	lı = -18 mA				-1.2		-1.2		-1.2	V		
	V _{CC} = 4.5 V,	IOH = - 3 m	A	2.5			2.5		2.5				
N/	$V_{CC} = 5 V$, $I_{OH} = -3 mA$			3			3		3		V		
VOH	$V_{CC} = 4.5 \text{ V}, \qquad I_{OH} = -24 \text{ mA}$			2			2				v		
	V _{CC} = 4.5 V,	I _{OH} = - 32 r	nA	2‡					2				
Voi	$V_{CC} = 4.5 \text{ V}, \qquad I_{OL} = 48 \text{ mA}$					0.55		0.55			v		
VOL	V _{CC} = 4.5 V,	I _{OL} = 64 mA	۱.			0.55‡				0.55] <u> </u>		
lj	V _{CC} = 5.5 V,	$CC = 5.5 \text{ V}, V_{I} = V_{CC} \text{ or GND}$				±1		±1		±1	μΑ		
IOZH	V _{CC} = 5.5 V,	V _O = 2.7 V				50		50		50	μA		
I _{OZL}	V _{CC} = 5.5 V,	V _O = 0.5 V				-50		-50		-50	μA		
loff	$V_{CC} = 0,$	$V_I \text{ or } V_O \leq 4$.5 V			±100				±100	μA		
ICEX	V _{CC} = 5.5 V,	V _O = 5.5 V	Outputs high			50		50		50	μA		
١O§	V _{CC} = 5.5 V,	V _O = 2.5 V		-50	-100	-180	-50	-180	-50	-180	mA		
	$V_{CC} = 5.5 \text{ V}, \qquad I_O = 0,$ $V_I = V_{CC} \text{ or GND}$		Outputs high			2		2		2	mA		
ICC			Outputs low			32		32		32			
	Outputs d		Outputs disabled			2		2		2			
${}^{\Delta I}CC^{\P}$	$V_{CC} = 5.5 \text{ V}$, One input at 3.4 V, Other inputs at V_{CC} or GND				1.5		1.5		1.5	mA			
Ci	VI = 2.5 V or 0.5 V									pF			
Co	V _O = 2.5 V or 0.	.5 V									pF		

[†] All typical values are at V_{CC} = 5 V.
[‡] On products compliant to MIL-STD-883, Class B, this parameter does not apply.

§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated