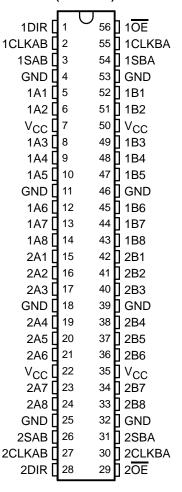
SCBS212B - JUNE 1992 - REVISED JANUARY 1997


- **Members of the Texas Instruments** Widebus™ Family
- State-of-the-Art *EPIC-IIB™* BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per **JEDEC Standard JESD-17**
- Typical V_{OLP} (Output Ground Bounce) < 1 V at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB
- High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OI})
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center **Spacings**

description

The 'ABT16646 consist of bus-transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers.

These devices can be used as two 8-bit transceivers or one 16-bit transceiver. Data on the A or B bus is clocked into the registers on the low-to-high transition of the appropriate clock (CLKAB or CLKBA) input. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'ABT16646.

SN54ABT16646 . . . WD PACKAGE SN74ABT16646 . . . DL PACKAGE (TOP VIEW)

Output-enable (OE) and direction-control (DIR) inputs are provided to control the transceiver functions. In the transceiver mode, data present at the high-impedance port may be stored in either register or in both. The select-control (SAB and SBA) inputs can multiplex stored and real-time (transparent mode) data. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. The direction control (DIR) determines which bus receives data when OE is low. In the isolation mode (OE high), A data can be stored in one register and/or B data can be stored in the other register.

When an output function is disabled, the input function is still enabled and can be used to store and transmit data. Only one of the two buses, A or B, can be driven at a time.

To ensure the high-impedance state during power up or power down, $\overline{\sf OE}$ should be tied to ${\sf V}_{\sf CC}$ through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

SCBS212B - JUNE 1992 - REVISED JANUARY 1997

description (continued)

The SN54ABT16646 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74ABT16646 is characterized for operation from -40° C to 85° C.

FUNCTION TABLE

		INPUTS				DATA	\ I/O†	ODERATION OR FUNCTION		
ŌĒ	DIR	CLKAB	CLKBA	SAB	SBA	A1-A8	B1-B8	OPERATION OR FUNCTION		
Х	Х	1	Х	Х	Х	Input	Unspecified	Store A, B unspecified [†]		
Х	X	Χ	\uparrow	X	Χ	Unspecified	Input	Store B, A unspecified [†]		
Н	Х	1	1	Х	Х	Input	Input	Store A and B data		
Н	Χ	H or L	H or L	X	Χ	Input disabled	Input disabled	Isolation, hold storage		
L	L	Х	Х	Х	L	Output	Input	Real-time B data to A bus		
L	L	Χ	H or L	X	Н	Output	Input	Stored B data to A bus		
L	Н	Х	Х	L	Х	Input	Output	Real-time A data to B Bus		
L	Н	H or L	Χ	Н	Χ	Input	Output	Stored A data to bus		

[†] The data-output functions may be enabled or disabled by various signals at $\overline{\mathsf{OE}}$ or DIR. Data-input functions are always enabled, i.e., data at the bus terminals is stored on every low-to-high transition of the clock inputs.

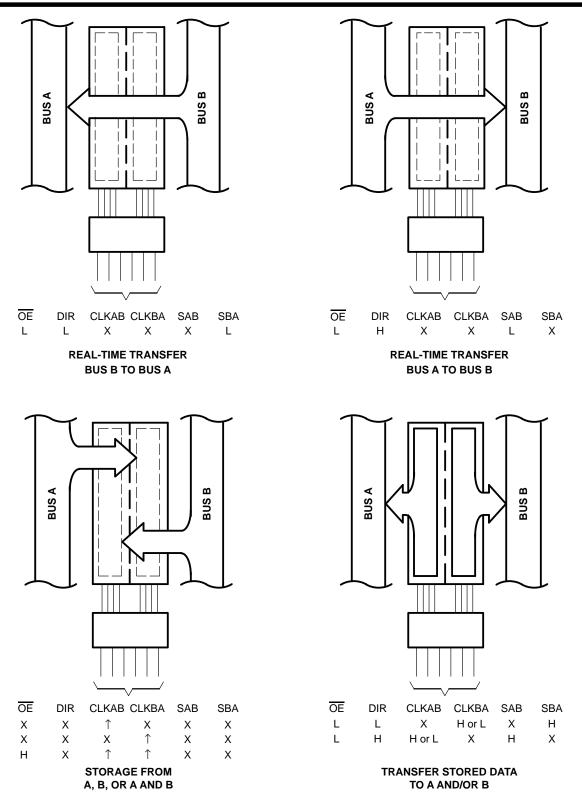
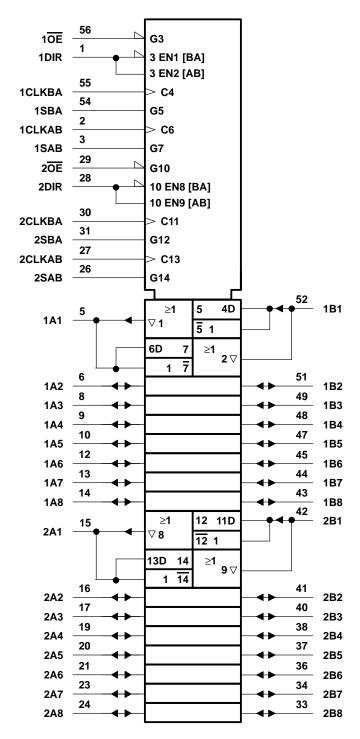
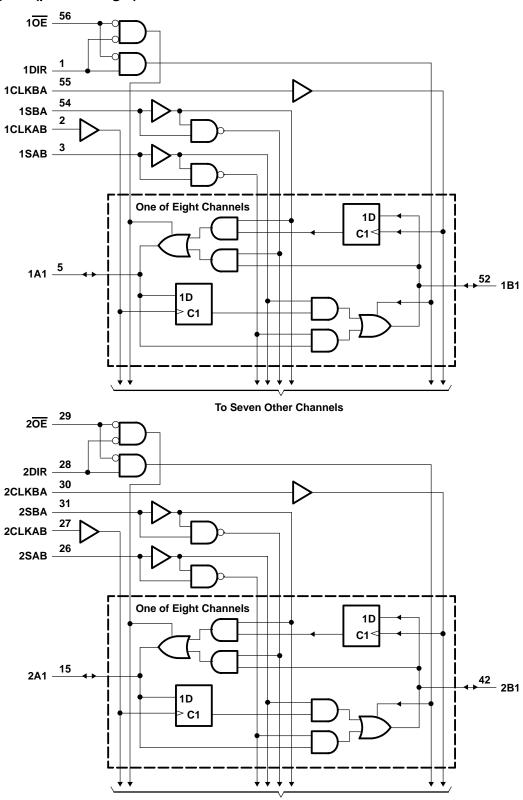



Figure 1. Bus-Management Functions


logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

SCBS212B - JUNE 1992 - REVISED JANUARY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I (except I/O ports) (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high or power-off state, VO	–0.5 V to 5.5 V
Current into any output in the low state, IO: SN54ABT16646	96 mA
SN74ABT16646	128 mA
Input clamp current, $I_{ K }(V_{ C } < 0)$	–18 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ _{JA} (see Note 2): DL package	74°C/W
Storage temperature range, T _{stq}	65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 3)

			SN54AB1	Г16646	SN74ABT	16646	UNIT
			MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	High-level input voltage		2		2	2 V	
VIL	Low-level input voltage			0.8		0.8	V
٧ _I	Input voltage		0	Vcc	0	VCC	V
loh	High-level output current			-24		-32	mA
loL	Low-level output current			48		64	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
TA	Operating free-air temperature		– 55	125	-40	85	°C

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

^{2.} The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

SCBS212B - JUNE 1992 - REVISED JANUARY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST COM	TEST CONDITIONS			T _A = 25°C			SN74AB1	UNIT		
PAP	KAMETER	TEST CON	DITIONS	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNII	
VIK		$V_{CC} = 4.5 \text{ V},$	$I_{I} = -18 \text{ mA}$			-1.2		-1.2		-1.2	V	
		$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -3 \text{ mA}$	2.5			2.5		2.5			
VOH		$V_{CC} = 5 V$,	$I_{OH} = -3 \text{ mA}$	3			3		3	3		
		V _{CC} = 4.5 V	$I_{OH} = -24 \text{ mA}$	2			2				V	
		VCC = 4.5 V	$I_{OH} = -32 \text{ mA}$	2*					2			
VoL		V _{CC} = 4.5 V	I _{OL} = 48 mA			0.55		0.55			٧	
VOL		VCC = 4.5 V	I _{OL} = 64 mA			0.55*				0.55	V	
V _{hys}					100						mV	
II	Control inputs	V _{CC} = 5.5 V, V _I = V ₀	CC or GND			±1		±1		±1	μΑ	
	A or B ports					±20		±20		±20		
lozH [‡]		$V_{CC} = 5.5 \text{ V},$	$V_0 = 2.7 \text{ V}$			10		10		10	μΑ	
lozL [‡]		$V_{CC} = 5.5 \text{ V},$	V _O = 0.5 V			-10		-10		-10	μΑ	
l _{off}		$V_{CC} = 0$,	V_I or $V_O \le 4.5 \text{ V}$			±100				±100	μΑ	
ICEX		V _{CC} = 5.5 V, V _O = 5.5 V	Outputs high			50		50		50	μΑ	
ΙΟ [§]		$V_{CC} = 5.5 \text{ V},$	V _O = 2.5 V	-50	-100	-180	-50	-180	-50	-180	mA	
		V _{CC} = 5.5 V,	Outputs high			2		2		2		
Icc	A or B ports	$I_0 = 0$,	Outputs low			32		32		32	mA	
		$V_I = V_{CC}$ or GND	Outputs disabled			2		2		2		
	Data inputs	V _{CC} = 5.5 V, One input at 3.4 V,	Outputs enabled			50		50		50		
ΔICC¶	Data Inputs	Other inputs at VCC or GND	Outputs disabled			50		50		50	μΑ	
	Control inputs		/ _{CC} = 5.5 V, One input at 3.4 V, Other inputs at V _{CC} or GND			50		50		50		
C _i	Control inputs	V _I = 2.5 V or 0.5 V			4						pF	
C _{io}	A or B ports	V _O = 2.5 V or 0.5 V			8						pF	

^{*} On products compliant to MIL-PRF-38535, this parameter does not apply.

[†] All typical values are at $V_{CC} = 5 \text{ V}$.

[‡]The parameters I_{OZH} and I_{OZL} include the input leakage current.

[§] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

[¶] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCBS212B - JUNE 1992 - REVISED JANUARY 1997

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 2)

		;	SN54AE	T16646		
		V _{CC} =	= 5 V, 25°C	MIN	MAX	UNIT
		MIN	MAX			
fclock	Clock frequency	0	125	0	125	MHz
t _W	Pulse duration, CLK high or low	4.3		4.3		ns
t _{su}	Setup time, A or B before CLKAB↑ or CLKBA↑	3.5		4		ns
th	Hold time, A or B after CLKAB↑ or CLKBA↑	0.5		0.5		ns

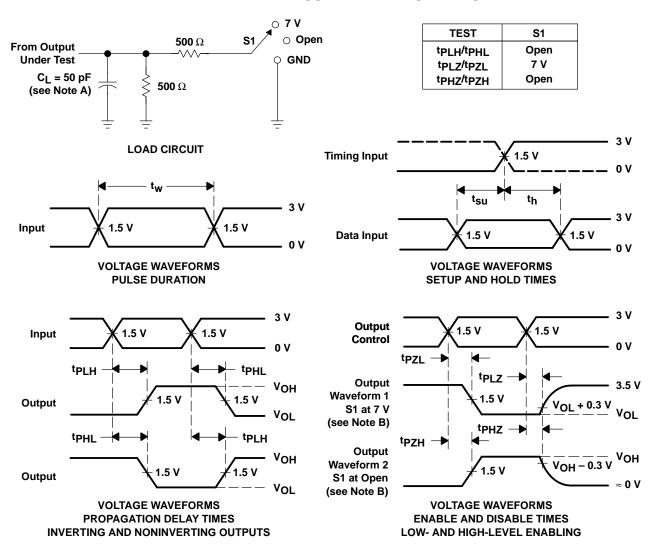
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 2)

		V _{CC} =	= 5 V, 25°C	MIN	MAX	UNIT
		MIN	MAX			<u>. </u>
fclock	Clock frequency	0	125	0	125	MHz
t _W	Pulse duration, CLK high or low	4.3		4.3		ns
t _{su}	Setup time, A or B before CLKAB↑ or CLKBA↑	3		3		ns
th	Hold time, A or B after CLKAB↑ or CLKBA↑	0		0		ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, T _A = 25°C			MIN	MAX	UNIT
			MIN	TYP	MAX			
f _{max}			125			125		MHz
^t PLH	CLKBA or CLKAB	A or B	1.5	3.1	4	1	5	ns
^t PHL		AOID	1.5	3.2	4.1	1	5	115
^t PLH	A or B	B or A	1	2.3	3.2	0.6	4	ns
t _{PHL}		BULK	1	3	4.1	0.6	4.9	115
t _{PLH}	SAB or SBA†	B or A	1	2.9	4.3	0.6	5.3	ns
t _{PHL}		BUIA	1	3.1	4.3	0.6	5.3	115
^t PZH	ŌĒ	A or B	1	3.4	4.6	0.6	5.9	ns
^t PZL	OE .	AOID	1.5	3.5	5.3	1	6	115
t _{PHZ}	ŌĒ	A or B	1.5	3.9	5.6	1	6.4	ns
t _{PLZ}	OE	AOID	1.5	3.1	4.4	1	4.7	110
^t PZH	DIR	A or B	1	3.2	4.5	0.6	5.8	ns
t _{PZL}	DIK	AUID	1.5	3.4	5.1	1	6.7	110
^t PHZ	DIR	A or B	2	4.2	5.9	1.2	7.1	ns
^t PLZ	DIN	A 01 B	1.5	3.6	5.1	1	6.2	115

[†]These parameters are measured with the internal output state of the storage register opposite that of the bus input.


switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50$ pF (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, T _A = 25°C			MIN	MAX	UNIT
			MIN	TYP	MAX			
f _{max}			125			125		MHz
^t PLH	CLKBA or CLKAB	A or B	1.5	3.1	4	1.5	4.9	ns
tPHL		AUID	1.5	3.2	4.1	1.5	4.7	110
^t PLH	A or B	B or A	1	2.3	3.2	1	3.9	ns
t _{PHL}		BULK	1	3	4.1	1	4.6	115
^t PLH	SAB or SBA†	B or A	1	2.9	4.3	1	5	ns
t _{PHL}	SAB OF SBAT	BULK	1	3.1	4.3	1	5	115
^t PZH	O E	A or B	1	3.4	4.6	1	5.5	ns
^t PZL	OE .		1.5	3.5	4.9	1.5	5.7	115
t _{PHZ}	O E	A or B	1.5	3.9	4.9	1.5	5.4	ns
t _{PLZ}	OE	A OF B	1.5	3.1	4.1	1.5	4.5	110
^t PZH	DIR	A or B	1	3.2	4.5	1	5.4	ns
t _{PZL}	DIK	AOIB	1.5	3.4	4.8	1.5	5.6	115
^t PHZ	DIR	A or B	2	4.2	5.7	2	6.7	ns
^t PLZ	DIK	A 01 B	1.5	3.6	5.1	1.5	5.9	115

[†]These parameters are measured with the internal output state of the storage register opposite that of the bus input.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated