SCBS207F – OCTOBER 1992 – REVISED MAY 1997

 Members of the Texas Instruments Widebus[™] Family 	SN54ABTH16460 . SN74ABTH16460 DO (TOP V	GG OR DL PACKAGE
 State-of-the-Art EPIC-IIB[™] BiCMOS Design Significantly Reduces Power Dissipation 		56 OEB1
 Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17 	LEAB2 [2 LEBA [3	55 0EB2 54 SEL0
 Typical V_{OLP} (Output Ground Bounce) < 1 V at V_{CC} = 5 V, T_A = 25°C 	GND [] 4 LEB1 [] 5	53 GND 52 1B1
 High-Impedance State During Power Up and Power Down 	LEB2 6 V _{CC} 7	51] 1B2 50] V _{CC}
 Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise 	CLKBA [] 8	49 1B3 48 1B4 47 2B1
 Flow-Through Architecture Optimizes PCB Layout 	GND [11 1A [12	46 GND 45 2B2
• High-Drive Outputs (-32-mA I _{OH} , 64-mA I _{OL})	2A [13	44] 2B3
 Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors 	CE_SEL0 [] 14 CE_SEL1 [] 15 3A [] 16	43 2B4 42 3B1 41 3B2
 Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink 	4A [17 GND [18 CLKENAB [19	40 3B3 39 GND 38 3B4
Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings	CLKENB 20 CLKENBA 21	37 4B1 36 4B2
description	V _{CC} [22 LEB3 [23	35 V _{CC} 34 4B3
The 'ABTH16460 are 4-bit to 1-bit multiplexed	LEB4 24 GND 25	33 4B4 32 GND

registered transceivers used in applications where four separate data paths must be multiplexed onto or demultiplexed from a single data path. Typical applications include multiplexing and/or demultiplexing of address and information microprocessor data in or bus-interface applications. These devices also are useful in memory-interleaving applications.

Five 4-bit I/O ports (1A–4A, 1B1–4, 2B1–4, 3B1–4, and 4B1–4) are available for address and/or data transfer. The output-enable (OEB, OEB1–OEB4, and OEA) inputs control the bus-transceiver functions. These control signals also allow 4-bit or 16-bit control, depending on the OEB level.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1997, Texas Instruments Incorporated

31 SEL1

OEB3

OEB4

30 T

29

OEA 26

LEAB3 27

LEAB4 28

1

SCBS207F - OCTOBER 1992 - REVISED MAY 1997

description (continued)

Address and/or data information can be stored using the internal storage latches/flip-flops. The latch-enable (LEB1–LEB4, LEBA, and LEAB1–LEAB4) and clock/clock-enable (CLK/CLKEN) inputs are used to control data storage. When either one of the latch-enable inputs is high, the latch is transparent (clock is a don't care as long as the latch enable is high). When the latch-enable input goes low (providing that the clock does not transit from low to high), the data present at the inputs is latched and remains latched until the latch-enable input is returned high. When the clock enable is low and the corresponding latch enable is low, data can be clocked on the low-to-high transition of the clock. When either the clock enable or the corresponding latch enable is high, the clock is a don't care.

Four select pins (SEL0, SEL1, CE_SEL0, and CE_SEL1) are provided to multiplex data (A port), or to select one of four clock enables (B port). This allows the user the flexibility of controlling one bit at a time.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABTH16460 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74ABTH16460 is characterized for operation from -40° C to 85° C.

Function Tables

A-TO-B OUTPUT ENABLE[†]

INP	UTS	OUTPUT
OEB	OEBn	Bn
н	Н	Z
н	L	Z
L	Н	Z
L	L	Active

† n = 1, 2, 3, 4

A-TO<u>-B STORAGE</u> (assuming OEB = L, OEBn = L)[‡]

	INPUTS								OUTI	PUTS	
CLKENAB	CE_SEL1	CE_SEL0	CLKAB	LEAB1	LEAB2	LEAB3	LEAB4	B1	B2	B3	B4
Х	Х	Х	H or L	Н	L	L	L	А	A ₀	A ₀	A ₀
Х	Х	Х	H or L	Н	Н	Н	L	А	А	А	A ₀
L	Х	Х	L	L	L	L	L	A ₀	A ₀	A ₀	A ₀
L	L	L	\uparrow	L	L	L	L	А	A ₀	A ₀	A ₀
L	L	Н	\uparrow	L	L	L	L	A ₀	А	A ₀	A ₀
L	Н	L	\uparrow	L	L	L	L	A ₀	A ₀	А	A ₀
L	Н	Н	\uparrow	L	L	L	L	A ₀	A ₀	A ₀	А
н	Х	Х	\uparrow	L	L	L	L	A ₀	A ₀	A ₀	A ₀

[‡] This table does not cover all the latch-enable cases since they have similar results.

SN54ABTH16460, SN74ABTH16460 4-TO-1 MULTIPLEXED/DEMULTIPLEXED TRANSCEIVERS WITH 3-STATE OUTPUTS SCBS207F – OCTOBER 1992 – REVISED MAY 1997

Function Tables (Continued)

			B-TO-A (before	STORAC point P				-			
	INPUTS										
CLKENB	CLKBA	LEB1	LEB2	LEB3	LEB4	SEL1	SEL0	Р			
Х	Х	Н	L	L	L	L	L	B1			
Х	Х	L	н	L	L	L	н	B2			
Х	Х	L	L	н	L	Н	L	B3			
Х	Х	L	L	L	Н	Н	Н	B4			
						L	L	B1			
	Ŷ			,	,	L	н	B2			
	I	L	L	L	L	н	L	B3			
				-	-	Н	Н	B4			
						L	L	в1 ₀ †			
	,	L	1		,	L	Н	в2 ₀ †			
	L	L	L	L	L	н	L	вз ₀ †			
						Н	Н	в4 ₀ †			

[†] Output level before the indicated steady-state input conditions were established

B-TO-A STORAGE (after point P)

	INF	UTS			OUTPUT
CLKENBA	CLKBA	LEBA	OEA	В	Α
Х	Х	Х	Н	Х	Z
Х	Х	н	L	L	L
Х	Х	н	L	Н	н
н	Х	L	L	Х	A0 [†]
L	\uparrow	L	L	L	L
L	\uparrow	L	L	Н	н
L	L	L	L	Х	A0 [†]

[†] Output level before the indicated steady-state input conditions were established

SCBS207F – OCTOBER 1992 – REVISED MAY 1997

logic diagram (positive logic)

SCBS207F - OCTOBER 1992 - REVISED MAY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (except I/O ports) (see Note 1)	–0.5 V to 7 V
Voltage range applied to any output in the high or power-off state, Vo	–0.5 V to 5.5 V
Current into any output in the low state, IO: SN54ABTH16460	96 mA
SN74ABTH16460	128 mA
Input clamp current, I _{IK} (V _I < 0)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	
Package thermal impedance, θ_{JA} (see Note 2): DGG package	81°C/W
DL package	
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

recommended operating conditions (see Note 3)

			SN54ABTI	H16460	SN74ABT	116460	UNIT
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	High-level input voltage		2	N	2		V
VIL	Low-level input voltage		0.8		0.8	V	
VI	Input voltage		0 0	Vcc	0	VCC	V
ЮН	High-level output current		7	-24		-32	mA
IOL	Low-level output current		UC	48		64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled	201	10		10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		Q 200		200		μs/V
Т _А	Operating free-air temperature	-55	125	-40	85	°C	

NOTE 3: Unused control pins must be held high or low to prevent them from floating.

SCBS207F - OCTOBER 1992 - REVISED MAY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CO		Т	A = 25°C	;	SN54ABT	H16460	SN74ABTI	116460	
PARAMETER		TEST CO	IDITIONS	MIN	TYP†	MAX	MIN	MAX	MIN	MAX	UNIT
VIK		V _{CC} = 4.5 V,	lj = –18 mA			-1.2		-1.2		-1.2	V
		V _{CC} = 4.5 V,	I _{OH} = –3 mA	2.5			2.5		2.5		
Maria		V _{CC} = 5 V,	I _{OH} = –3 mA	3			3		3		v
VOH		V _{CC} = 4.5 V	I _{OH} = -24 mA	2			2				v
		VCC = 4.5 V	I _{OH} = -32 mA	2*					2		
			I _{OL} = 48 mA		0.36			0.5			V
VOL		V _{CC} = 4.5 V	I _{OL} = 64 mA			0.55*				0.55	V
V _{hys}					100						mV
	Control inputs	$V_{CC} = 0$ to 5.5 V, $V_{I} = V_{CC}$ or GND				±1		±1		±1	
I	A or B ports	$V_{CC} = 2.1 V \text{ to } 5.5 V_{I} = V_{CC} \text{ or GND}$	V,			±20		±20		±20	μA
	A an D manta		V _I = 0.8 V	75		500	75	500	75	500	•
l(hold)	A or B ports	V _{CC} = 4.5 V	V _I = 2 V	-75		-500	-75	-500	-75	-500	μA
IOZPU‡	:	$V_{CC} = 0 \text{ to } 2.1 \text{ V},$ $V_{O} = 0.5 \text{ V} \text{ to } 2.7 \text{ V}, \overline{OE} = X$				±50	Q	±50		±50	μA
IOZPD [‡]	;	$V_{CC} = 2.1 V \text{ to } 0,$ $V_{O} = 0.5 V \text{ to } 2.7 V$	∕, OE = X			±50	DUC	±50		±50	μA
l _{off}		$V_{CC} = 0,$	$V_{I} \text{ or } V_{O} \leq 4.5 \text{ V}$			±100	22			±100	μA
ICEX		V _{CC} = 5.5 V, V _O = 5.5 V	Outputs high			50		50		50	μA
١٥§		V _{CC} = 5.5 V,	V _O = 2.5 V	-50	-100	-200	-50	-200	-50	-200	mA
			Outputs high			1.5		1.5		1.5	
1		$V_{CC} = 5.5 V,$	A outputs low			10		10		10	
ICC		$I_{O} = 0,$ $V_{I} = V_{CC} \text{ or GND}$	B outputs low			32		32		32	mA
		1 00	Outputs disabled			1.5		1.5		1.5	
ΔI_{CC} ¶		V_{CC} = 5.5 V, One input at 3.4 V, Other inputs at V_{CC} or GND				1.5		1.5		1.5	mA
Ci	Control inputs	V _I = 2.5 V or 0.5 V			8						pF
Cio	A or B ports	V _O = 2.5 V or 0.5 V	/		3.5						pF

* On products compliant to MIL-PRF-38535, this parameter does not apply.

[†] All typical values are at $V_{CC} = 5 V$.

[‡]This parameter is characterized but not production tested.

\$ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCBS207F - OCTOBER 1992 - REVISED MAY 1997

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

				SN54ABT	H16460	SN74ABT	H16460	UNIT
				MIN	MAX	MIN	MAX	UNIT
fclock	Clock frequency			0	160	0	160	MHz
		CLKAB high or low		3.8		3.8		
		CLKBA high or low		4.5		4.5		
tw	Pulse duration	LEAB1, 2, 3, or 4 high		2.2		2.2		ns
		LEBA high		2.1		2.1		
		LEB1, 2, 3, or 4 high		2.4		2.4		
			A bus	2.5		2.5		
		Before CLKAB↑	CE_SEL0/1	3.2		3.2		
			CLKENAB	3.2		3.2		
		Before LEAB1, 2, 3, or $4\downarrow$	A bus	3.6		3.6		
			B bus	3.8		3.8		
			CLKENB	2.3	W	2.3		
t _{su}	t _{su} Setup time	Before CLKBA↑	CLKENBA	2.5	,S	2.5		ns
			LEB1, 2, 3, or 4	4.3		4.3		
			SEL0/1	4,5		4.5		
		Before LEB1, 2, 3, or $4\downarrow$	B bus	3.2		3.2		
			B bus	<u> </u>		4		
		Before LEBA \downarrow	LEB1, 2, 3, or 4	Q 4.4		4.4		
			SEL0/1	4.3		4.3		
			A bus	0.5		0.5		
		After CLKAB [↑]	CE_SEL0/1	1.1		1.1		
			CLKENAB	0.5		0.5		
		After LEAB1, 2, 3, or $4\downarrow$	A bus	1.2		1.2		
			B bus	1.3		1.3		
^t h	Hold time		CLKENB	1		1		ns
		After CLKBA↑	CLKENBA	1		1		
			SEL0/1	0		0		
		After LEB1, 2, 3, or $4\downarrow$	B bus	1.5		1.5		
			B bus	0.4		0.4		
		After LEBA↓	SEL0/1	0.1		0.1		

SCBS207F - OCTOBER 1992 - REVISED MAY 1997

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V ₍	CC = 5 V A = 25°C	, ;	SN54ABT	H16460	SN74ABT	H16460	UNIT
		(001-01)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
f _{max}			160			160		160		MHz
^t PLH	В	А	2.5	3.6	5.9	2.5	7.1	2.5	6.5	ns
^t PHL	В	A	2	3.5	5.8	2	6.8	2	6.5	115
^t PZH	OEA	А	1.5	2.8	4.8	1.5	5.9	1.5	5.6	ns
^t PZL	OEA	A	1.5	2.6	4.6	1.5	5.5	1.5	5.2	115
^t PHZ	OEA	А	2.5	3.8	5.3	2.5	6	2.5	5.9	ns
^t PLZ	OEA	A	1.5	4.6	6.1	1.5	7	1.5	6.5	115
^t PLH	A	В	2	3.2	5.2	2	6.2	2	5.7	ns
^t PHL	A	В	1.5	3.1	5.2	1.5	6.1	1.5	5.7	115
^t PZH		В	1.5	3.3	5.7	1.5	6.7	1.5	6.4	
^t PZL	OEB	В	1.5	3.2	5.5	1.5	6.6	1.5	6.3	ns
^t PHZ	055	В	3	4.7	6.3	3	7.1	3	7	
^t PLZ	OEB	В	2	4	5.5	2	6.6	2	6.1	ns
^t PZH		в	1.5	3	5.2	1.5	6	1.5	5.8	
^t PZL	OEB1, 2, 3, 4	В	1.5	2.9	4.9	01.5	5.9	1.5	5.6	ns
^t PHZ		В	2.5	4	5.7	2 2.5	6.2	2.5	6.1	
^t PLZ	OEB1, 2, 3, 4	В	1.5	3.5	4.8	1.5	5.8	1.5	5.3	ns
^t PLH	CLKBA	А	1.5	4.2	6.7	1.5	8.1	1.5	7.4	ns
^t PHL	CERBA	A	1.5	4.4	6.9	1.5	8.4	1.5	7.7	115
^t PLH	CLKAB	В	2	3.4	5.6	2	6.8	2	6.2	ns
^t PHL			2	3.4	5.3	2	6.3	2	5.9	115
^t PLH	LEBA	А	2	3	5	2	6.1	2	5.6	ns
^t PHL		~	2	3.1	4.8	2	5.8	2	5.3	115
^t PLH	LEAB1, 2, 3, 4	В	2	3.2	5.2	2	6.3	2	5.8	ns
^t PHL			2	3.3	5	2	6.1	2	5.6	115
^t PLH	LEBA1, 2, 3, 4	А	2.5	4	6.5	2.5	7.8	2.5	7.2	ns
^t PHL	LEDA1, 2, 3, 4		2.5	4	6.1	2.5	7.5	2.5	6.8	115
^t PLH	SEL	А	2	4.1	6.7	2	8.1	2	7.5	
^t PHL		A	2	3.8	6.2	2	7.3	2	6.9	ns

SCBS207F – OCTOBER 1992 – REVISED MAY 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_O = 50 Ω, t_f ≤ 2.5 ns, t_f ≤ 2.5 ns.
- C. All input pulses are supplied by generators naving the rollowing characteristics: PRR \leq 10 MHz, Z_{O} = 50 Ω , $t_{f} \leq 2.5$ ns, $t_{f} \leq 2.5$ n

D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated