
SCBS204C - JUNE 1992 - REVISED MAY 1997

- **Members of the Texas Instruments** Widebus™ Family
- State-of-the-Art *EPIC-IIB™* BiCMOS Design Significantly Reduces Power Dissipation
- **ESD Protection Exceeds 2000 V Per** MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 500 mA Per **JEDEC Standard JESD-17**
- Typical V_{OLP} (Output Ground Bounce) < 1 V at $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$
- **High-Impedance State During Power Up** and Power Down
- Distributed V_{CC} and GND Pin Configuration **Minimizes High-Speed Switching Noise**
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OL})
- Bus Hold on Data Inputs Eliminates the **Need for External Pullup/Pulldown Resistors**
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) Package and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center **Spacings**

description

The SN54ABT16260 and SN74ABTH16260 are 12-bit to 24-bit multiplexed D-type latches used in applications in which two separate data paths must be multiplexed onto, or demultiplexed from, a single data path. Typical applications include multiplexing and/or demultiplexing of address and information in microprocessor bus-interface applications. This device is also useful in memory-interleaving applications.

SN54ABT16260 . . . WD PACKAGE SN74ABTH16260 . . . DL PACKAGE (TOP VIEW)

Three 12-bit I/O ports (A1–A12, 1B1–1B12, and 2B1–2B12) are available for address and/or data transfer. The output-enable ($\overline{\text{OE1B}}$, $\overline{\text{OE2B}}$, and $\overline{\text{OEA}}$) inputs control the bus-transceiver functions. The $\overline{\text{OE1B}}$ and $\overline{\text{OE2B}}$ control signals also allow bank control in the A-to-B direction.

Address and/or data information can be stored using the internal storage latches. The latch-enable (LE1B, LE2B, LEA1B, and LEA2B) inputs are used to control data storage. When the latch-enable input is high, the latch is transparent. When the latch-enable input goes low, the data present at the inputs is latched and remains latched until the latch-enable input is returned high.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

SCBS204C - JUNE 1992 - REVISED MAY 1997

description (continued)

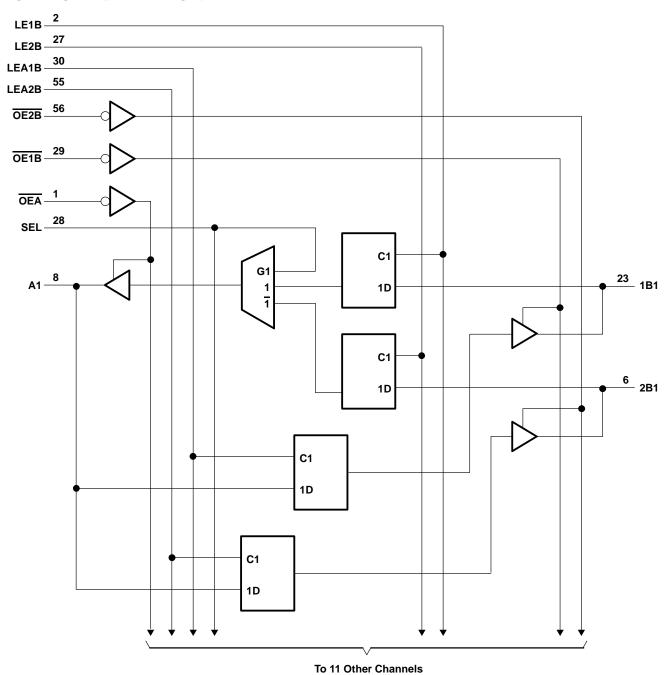
When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN54ABT16260 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ABTH16260 is characterized for operation from –40°C to 85°C.

Function Tables

B TO A ($\overline{OEB} = H$)


	INPUTS							
1B	2B	SEL	LE1B	LE2B	OEA	Α		
Н	Χ	Н	Н	Х	L	Н		
L	Χ	Н	Н	X	L	L		
Х	Χ	Н	L	X	L	A ₀		
Х	Н	L	X	Н	L	Н		
Х	L	L	X	Н	L	L		
Х	Χ	L	X	L	L	A ₀		
Х	Χ	Χ	X	X	Н	Z		

A TO B ($\overline{OEA} = H$)

		INPUTS			OUTPUTS			
Α	LEA1B	LEA2B	OE1B	OE2B	1B	2B		
Н	Н	Н	L	L	Н	Н		
L	Н	Н	L	L	L	L		
Н	Н	L	L	L	Н	2B ₀		
L	Н	L	L	L	L	2B ₀		
Н	L	Н	L	L	1B ₀	Н		
L	L	Н	L	L	1B ₀	L		
Х	L	L	L	L	1B ₀	2B ₀		
Х	X	Χ	Н	Н	Z	Z		
Х	Χ	X	L	Н	Active	Z		
Х	Χ	Χ	Н	L	Z	Active		
Х	X	Χ	L	L	Active	Active		

SCBS204C - JUNE 1992 - REVISED MAY 1997

logic diagram (positive logic)

SCBS204C - JUNE 1992 - REVISED MAY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	
Input voltage range, V _I (see Note 1)	–0.5 V to 7 V
Voltage range applied to any output in the high or power-off state, VO	–0.5 V to 5.5 V
Current into any output in the low state, IO: SN54ABT16260	96 mA
SN74ABTH16260	128 mA
Input clamp current, I _{IK} (V _I < 0)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ _{JA} (see Note 2): DL package	74°C/W
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 3)

					SN74ABTI	UNIT	
			MIN	MAX	MIN	MAX	UNII
Vcc	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	High-level input voltage				2		V
V _{IL}	Low-level input voltage			0.8		8.0	V
VI	Input voltage			Vcc	0	VCC	V
loн	High-level output current			-24		-32	mA
lOL	Low-level output current			48		64	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200		200		μs/V
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: Unused control inputs must be held high or low to prevent them from floating.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

^{2.} The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

SCBS204C - JUNE 1992 - REVISED MAY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		Т	A = 25°C	;	SN54ABT16260		SN74ABTH16260		UNIT
PAR	AMETER	TEST CON	DITIONS	MIN	TYP†	MAX	MIN	MAX	MIN	MAX	UNII
٧ıK		$V_{CC} = 4.5 \text{ V},$	I _I = -18 mA			-1.2		-1.2		-1.2	V
		$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -3 \text{ mA}$	2.5			2.5		2.5		
VOH	$V_{CC} = 5 V$,	$I_{OH} = -3 \text{ mA}$	3			3		3		V	
	V _{CC} = 4.5 V	$I_{OH} = -24 \text{ mA}$	2			2				V	
		VCC = 4.5 V	$I_{OH} = -32 \text{ mA}$	2*					2		
VoL		V _{CC} = 4.5 V	I _{OL} = 48 mA		0.36			0.5			V
VOL		VCC = 4.5 V	I _{OL} = 64 mA			0.55*				0.55	V
V_{hys}					100						mV
1.	Control inputs	$V_{CC} = 0$ to 5.5 V, $V_I = V_{CC}$ or GND				±1		±1		±1	A
lı	A or B ports	$V_{CC} = 2.1 \text{ V to } 5.5 \text{ V}$ $V_I = V_{CC} \text{ or GND}$	/,			±20		±100		±20	μΑ
	A == D == ===	5	V _I = 0.8 V				100		100		
l(hold)	A or B ports	V _{CC} = 4.5 V	V _I = 2 V				-100		-100		μΑ
lozpu [‡]		$V_{CC} = 0 \text{ to } 2.1 \text{ V},$ $V_{O} = 0.5 \text{ V to } 2.7 \text{ V},$	OE = X			±50		±50		±50	μΑ
lozpd‡		V _{CC} = 2.1 V to 0, V _O = 0.5 V to 2.7 V,	OE = X			±50		±50		±50	μΑ
I _{OZH} §		$V_{CC} = 2.1 \text{ V to } 5.5 \text{ V}$ $V_{O} = 2.7 \text{ V}, \overline{OE} \ge 2 \text{ V}$				10		10		10	μΑ
IOZL§		$V_{CC} = 2.1 \text{ V to } 5.5 \text{ V}$ $V_{O} = 0.5 \text{ V}, \overline{OE} \ge 2 \text{ V}$				-10		-10		-10	μΑ
l _{off}		$V_{CC} = 0$,	V_I or $V_O \le 4.5 \text{ V}$			±100				±100	μΑ
ICEX		V _{CC} = 5.5 V, V _O = 5.5 V	Outputs high			50		50		50	μΑ
ΙΟ [¶]		V _{CC} = 5.5 V,	V _O = 2.5 V	-50	-100	-225	-50	-225	-50	-225	mA
_		V _{CC} = 5.5 V,	Outputs high			1.5		1.5		1.5	_
ICC	$I_{O} = 0$,	Outputs low			63		63		63	mA	
		$V_I = V_{CC}$ or GND	Outputs disabled			1		1		1	
ΔICC#		V_{CC} = 5.5 V, One in Other inputs at V_{CC}				1.5		1.5		1.5	mA
Ci		V _I = 2.5 V or 0.5 V			3						pF
Cio		$V_0 = 2.5 \text{ V or } 0.5 \text{ V}$			11.5						pF

^{*} On products compliant to MIL-PRF-38535, this parameter does not apply.

[†] All typical values are at $V_{CC} = 5 \text{ V}$.

[‡]This parameter is characterized, but not production tested.

[§] The parameters IOZH and IOZL include the input leakage current.

[¶] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

[#] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCBS204C - JUNE 1992 - REVISED MAY 1997

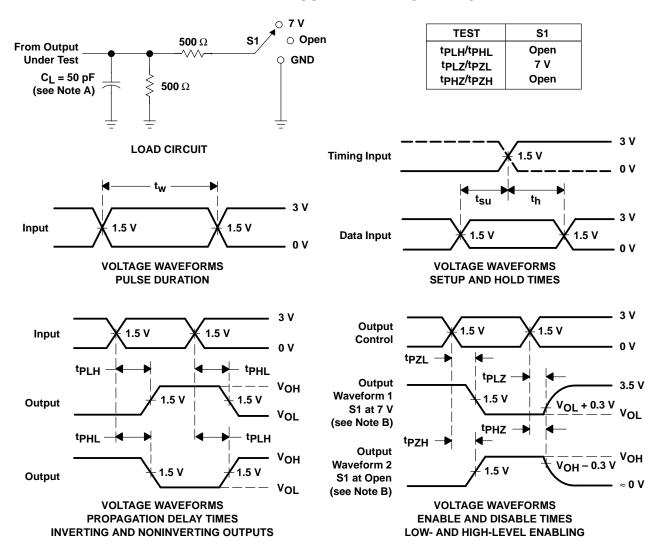
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

		V _{CC} = 5 V, T _A = 25°C†		SN54AB1	Г16260	SN74ABTI	UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX	
t _W	Pulse duration, LE1B, LE2B, LEA1B, or LEA2B high	3.3		3.3		3.3		ns
t _{su}	Setup time, data before LE1B, LE2B, LEA1B, or LEA2B↓	1.5		2		1.5		ns
th	Hold time, data after LE1B, LE2B, LEA1B, or LEA2B↓	1		1.5		1		ns

[†] These values apply only to the SN74ABTH16260.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_1 = 50$ pF (unless otherwise noted) (see Figure 1)

				SN54ABT16260					
PARAMETER	FROM (INPUT)	TO (OUTPUT)		CC = 5 \ 4 = 25°C		MIN	MAX	UNIT	
			MIN	TYP	MAX				
^t PLH	A or B	B or A	1	3.1	5.3	1	5.9	20	
t _{PHL}	AUIB	B OF A	1	3.4	5.4	1	6.3	ns	
t _{PLH}	LE	A or B	1.1	3.2	5.4	1.1	6.6	ns	
t _{PHL}		E AOID	1.1	3.3	5.3	1.1	5.9	115	
4 —	SEL (B1)		1.3	3.2	5.1	1.3	5.4	ns	
^t PLH	SEL (B2)	Α	1.1	3.4	5.4	1.1	6.3		
4	SEL (B1)	1 ^	1.5	3.1	4.6	1.5	5		
^t PHL	SEL (B2)		1.6	3.6	5.3	1.6	6.2		
^t PZH			1	3.3	5.6	1	6.4		
^t PZL	ŌĒ	A or B	1.6	3.8	5.9	1.6	6.5	ns	
^t PHZ	ŌĒ	A or D	2.2	4.1	5.9	2.2	7.5		
^t PLZ] "	A or B	1.3	3.2	5	1.3	5.4	ns	


switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50$ pF (unless otherwise noted) (see Figure 1)

				SN74	ABTH16	6260		
PARAMETER	FROM (INPUT)	TO (OUTPUT)				MIN	MAX	UNIT
			MIN	TYP	MAX			
^t PLH	A or B	B or A	1	3.1	4.8	1	5.6	ne
t _{PHL}	AOID	BUIA	1	3.4	5	1	5.9	ns
t _{PLH}	1.5	LE A or B		3.2	4.9	1.1	5.8	ns
^t PHL	LE	AUB	1.1	3.3	4.9	1.1	5.3	115
t =	SEL (B1)	A	1.3	3.2	4.6	1.3	5.3	4 I
^t PLH	SEL (B2)		1.1	3.4	4.9	1.1	6	
t	SEL (B1)	A	1.5	3.1	4.4	1.5	4.4	
^t PHL	SEL (B2)		1.6	3.6	5.1	1.6	5.9	
^t PZH	ŌĒ	A - :: D	1	3.3	4.7	1	5.7	20
t _{PZL}	OE	A or B		3.8	5.1	1.6	5.8	ns
^t PHZ	ŌĒ	A or B	2.2	4.1	5.4	2.2	6.4	
^t PLZ	OE	A or B	1.3	3.2	4.4	1.3	4.8	ns

SCBS204C - JUNE 1992 - REVISED MAY 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated