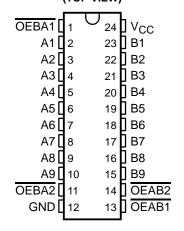
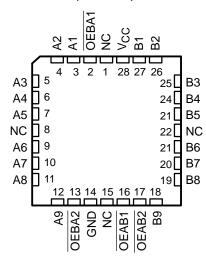
SCBS201C - FEBRUARY 1991 - REVISED MAY 1997

- State-of-the-Art *EPIC-IIB™* BiCMOS Design **Significantly Reduces Power Dissipation**
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 500 mA Per **JEDEC Standard JESD-17**
- Typical V_{OLP} (Output Ground Bounce) < 1 V at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$
- **High-Impedance State During Power Up** and Power Down
- High-Drive Outputs (-32-mA IOH, 64-mA IOI)
- **Package Options Include Plastic** Small-Outline (DW) and Shrink Small-Outline (DB) Packages, Ceramic Chip Carriers (FK), and Plastic (NT) and Ceramic (JT) DIPs

description


The 'ABT863 are 9-bit transceivers designed for asynchronous communication between data buses. The control-function implementation allows for maximum flexibility in timing.

These devices allow noninverted transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic levels at the output-enable (OEAB and OEBA) inputs.


The outputs are in the high-impedance state during power up and power down. The outputs remain in the high-impedance state while the device is powered down.

When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, OE should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

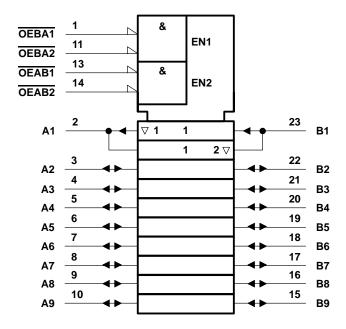
SN54ABT863 . . . JT PACKAGE SN74ABT863 . . . DB. DW. OR NT PACKAGE (TOP VIEW)

SN54ABT863 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

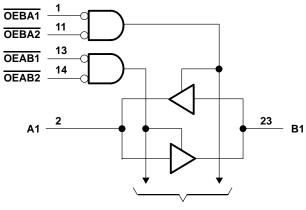
The SN54ABT863 is characterized for operation over the full military temperature range of -55° C to 125 $^{\circ}$ C. The SN74ABT863 is characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


EPIC-IIB is a trademark of Texas Instruments Incorporated

FUNCTION TABLE

	INP	OPERATION		
OEAB1	OEAB2	OEBA1	OEBA2	OPERATION
L	L	L	L	Latch A and B
L	L	Н	Х	A to B
L	L	Χ	Н	АЮБ
Н	Х	L	L	B to A
Х	Н	L	L	Blok
Н	Х	Н	Х	
Н	Χ	Χ	Н	Isolation
Х	Н	Χ	Н	1501411011
Х	Н	Н	Χ	


logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the DB, DW, JT, and NT packages.

logic diagram (positive logic)

To Eight Other Channels

Pin numbers shown are for the DB, DW, JT, and NT packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		–0.5 V to 7 V
Input voltage range, V _I (except I/O ports) (see N	Note 1)	–0.5 V to 7 V
Voltage range applied to any output in the high	or power-off state, V _O	
Current into any output in the low state, Io: SN	54ABT863	96 mA
SN'	74ABT863	
Input clamp current, I _{IK} (V _I < 0)		–18 mA
Output clamp current, I _{OK} (V _O < 0)		–50 mA
Package thermal impedance, θ_{JA} (see Note 2):	DB package	104°C/W
	DW package	81°C/W
	NT package	67°C/W
Storage temperature range, T _{stg}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 3)

			SN54A	SN54ABT863		SN74ABT863	
			MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage		4.5	5.5	4.5	5.5	V
V _{IH}	High-level input voltage		2	3	2		V
V _{IL}	Low-level input voltage					0.8	V
VI	Input voltage				0	VCC	V
ІОН	OH High-level output current					-32	mA
loL	Low-level output current			48		64	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled	30/	5		5	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200		200		μs/V
T _A	Operating free-air temperature			125	-40	85	°C

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.

^{2.} The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51, except for through-hole packages, which use a trace length of zero.

SN54ABT863, SN74ABT863 9-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCBS201C - FEBRUARY 1991 - REVISED MAY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

V _{IK} V _{CC} = 4.5 V, I _I = -18 mA -1.2 -1.2 -1.2 V	PARAMETER		TEST CONDITIONS		T	T _A = 25°C			SN54ABT863		SN74ABT863				
VOH VOH					MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNII			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VIK		$V_{CC} = 4.5 \text{ V},$	I _I = -18 mA			-1.2		-1.2		-1.2	V			
VOH Common Notes Common Notes Volume <			$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -3 \text{ mA}$	2.5			2.5		2.5					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	\/a		$V_{CC} = 5 V$,	$I_{OH} = -3 \text{ mA}$	3			3		3		V			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VOH		V00 = 45 V	$I_{OH} = -24 \text{ mA}$	2			2							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			VCC = 4.5 V	$I_{OH} = -32 \text{ mA}$	2*					2					
Vhys Control inputs V _{CC} = 0 to 5.5 V, V _I = V _{CC} or GND ±1 ±1 ±1 ±1 ±1 ±1 μA IOZPU [‡] V _{CC} = 0 to 2.1 V to 5.5 V, V _I = V _{CC} or GND ±20 ±50 ±50 ±50 ±50 ±50 ±50 ±50 ±50 ±50 ±50 ±50 ±50 ±50 ±60	V/01		V00 = 45 V	$I_{OL} = 48 \text{ mA}$			0.55		0.55			V			
$ \begin{array}{ c c c c c } \hline I_{ } & \hline & Control inputs & V_{CC} = 0 to 5.5 \ V, & V_{ } = V_{CC} \ or \ GND & \pm 1 & \pm 1 & \pm 1 \\ \hline & A \ or \ B \ ports & V_{CC} = 2.1 \ V \ to 5.5 \ V, & V_{ } = V_{CC} \ or \ GND & \pm 20 & \pm 20 & \pm 20 \\ \hline & V_{CC} = 0 \ to \ 2.1 \ V, \ V_{O} = 0.5 \ V \ to \ 2.7 \ V, \\ \hline \hline & V_{CC} = 0 \ to \ 2.1 \ V, \ V_{O} = 0.5 \ V \ to \ 2.7 \ V, \\ \hline \hline & V_{CC} = 2.1 \ V \ to \ 0, \ V_{O} = 0.5 \ V \ to \ 2.7 \ V, \\ \hline \hline & V_{CC} = 2.1 \ V \ to \ 5.5 \ V, \ V_{O} = 2.7 \ V, \\ \hline \hline & V_{CC} = 2.1 \ V \ to \ 5.5 \ V, \ V_{O} = 2.7 \ V, \\ \hline \hline & V_{CC} = 2.1 \ V \ to \ 5.5 \ V, \ V_{O} = 2.7 \ V, \\ \hline \hline & V_{CC} = 2.1 \ V \ to \ 5.5 \ V, \ V_{O} = 0.5 \ V, \\ \hline \hline & V_{CC} = 2.1 \ V \ to \ 5.5 \ V, \ V_{O} = 0.5 \ V, \\ \hline \hline & V_{CC} = 2.1 \ V \ to \ 5.5 \ V, \ V_{O} = 0.5 \ V, \\ \hline \hline & V_{CC} = 2.1 \ V \ to \ 5.5 \ V, \ V_{O} = 0.5 \ V, \\ \hline \hline & V_{CC} = 2.1 \ V \ to \ 5.5 \ V, \ V_{O} = 0.5 \ V, \\ \hline \hline & V_{CC} = 2.5 \ V, \ V_{O} = 0.5 \ V, \\ \hline & V_{CC} = 5.5 \ V, \ V_{O} = 2.5 \ V \ V_{O} = 0.5 \ V, \\ \hline & V_{CC} = 5.5 \ V, \ V_{O} = 2.5 \ V \ V_{O} = 0.5 \ V, \\ \hline & V_{CC} = 5.5 \ V, \ V_{O} = 0.5 \ V, \\ \hline & V_{CC} = 5.5 \$	VOL		VCC = 4.5 V	$I_{OL} = 64 \text{ mA}$			0.55*				0.55				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{hys}					100						mV			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	١,,	Control inputs	$V_{CC} = 0 \text{ to } 5.5 \text{ V},$	$V_I = V_{CC}$ or GND			±1		±1		±1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	'1	A or B ports	$V_{CC} = 2.1 \text{ V to } 5.5 \text{ V}, V_{I} = V_{CC} \text{ or GND}$				±20		±20		±20	μΑ			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{OZPU} ‡						±50		±50		±50	μΑ			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	l _{OZPD} ‡	:					±50		±50		±50	μА			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{OZH} §						10	(2)	10		10	μА			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	lozL§						-10	40p	-10		-10	μА			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	l _{off}		$V_{CC} = 0$,	V _I or V _O ≤ 4.5 V			±100	4			±100	μА			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ICEX			Outputs high			50		50		50	μΑ			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	IO¶		$V_{CC} = 5.5 \text{ V},$	V _O = 2.5 V	- 50	-100	-180	-50	-180	-50	-180	mA			
$ \begin{array}{ c c c c c c c c c } \hline ICC & A \ or \ B \ ports & I_O = 0, \\ V_I = V_{CC} \ or \ GND & \hline Outputs \ low & 24 & 30 & 38 & 38 & mA \\ \hline \hline Outputs \ disabled & 0.5 & 250 & 250 & 250 & 250 & \muA \\ \hline \hline \\ Data \ inputs & V_{CC} = 5.5 \ V, \\ One \ input \ at \ 3.4 \ V, \\ Other \ inputs \ at \\ V_{CC} \ or \ GND & \hline Outputs \ enabled & 0.05 & 0.05 & 0.05 & 0.05 \\ \hline \hline \\ Control \ inputs & V_{CC} = 5.5 \ V, \ One \ input \ at \ 3.4 \ V, \\ Other \ inputs \ at \ V_{CC} \ or \ GND & 1.5 & 1.5 & 1.5 \\ \hline \hline \\ C_i & Control \ inputs & V_I = 2.5 \ V \ or \ 0.5 \ V & 4 & pF \\ \hline \end{array} $		A or B ports				Vcc = 5.5 V.	Outputs high		1	250		250		250	μΑ
$ \Delta l_{CC}^{\#} $	ICC		$I_{O} = 0$,	Outputs low		24	30		38		38	mA			
			V _I = V _{CC} or GND	Outputs disabled		0.5	250		250		250	μΑ			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Data inputs		Outputs enabled			1.5		1.5		1.5				
Control inputs Other inputs at V_{CC} or GND Ci Control inputs $V_{I} = 2.5 \text{ V}$ or 0.5 V 4 pF	ΔICC#		Other inputs at	Outputs disabled			0.05		0.05		0.05	mA			
		Control inputs					1.5		1.5		1.5				
C: A or B ports Vo = 2.5 V or 0.5 V	Ci	Control inputs	V _I = 2.5 V or 0.5 V			4						pF			
V_0	C _{io}	A or B ports	V _O = 2.5 V or 0.5 V			7						pF			

^{*} On products compliant to MIL-PRF-38535, this parameter does not apply.

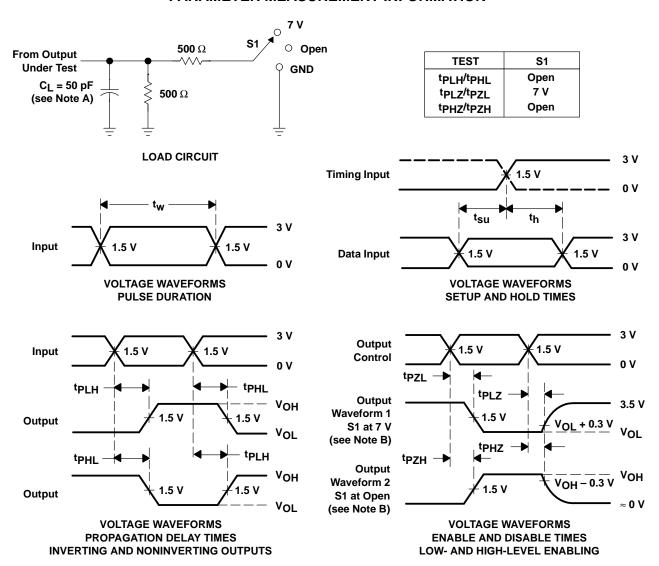
[†] All typical values are at $V_{CC} = 5 \text{ V}$.

[‡] This parameter is characterized, but not production tested.

[§] The parameters IOZH and IOZL include the input leakage current.

[¶] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

[#] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.


SN54ABT863, SN74ABT863 9-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCBS201C - FEBRUARY 1991 - REVISED MAY 1997

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	FROM TO (OUTPUT)	V _{CC} = 5 V, T _A = 25°C			SN54ABT863		SN74ABT863		UNIT
	(INFO1)		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
^t PLH	A or B	B or A	1	2.6	4.1	1	77	1	5.7	ns
t _{PHL}			1	2.3	3.3	1	3.9	1	3.9	
^t PZH	OEAB or OEBA	B or A	1	3.2	4.3	1,	5.4	1	5.5	
t _{PZL}			1	3.3	4.4	37)	5.5	1	5.4	ns
^t PHZ	OEAB or OEBA	D an A	2.5	4.8	6	2.5	6.8	2.5	6.7	ns
t _{PLZ}		OEAB or OEBA B or A	1.5	4.4	5.9	1.5	7.8	1.5	6.9] "

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \ \Omega$, $t_f \leq 2.5 \ ns$.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated