SN54ABT828, SN74ABT828 **10-BIT BUFFERS/DRIVERS** WITH 3-STATE OUTPUTS

SCBS194 - FEBRUARY 1991 - REVISED OCTOBER 1992

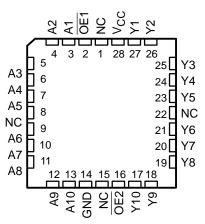
- State-of-the-Art EPIC-IIB[™] BiCMOS Design **Significantly Reduces Power Dissipation**
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Flow-Through Architecture Optimizes **PCB** Layout
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical V_{OLP} (Output Ground Bounce) < 1 V at V_{CC} = 5 V, T_A = 25°C
- High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OI})
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic **Chip Carriers, and Plastic and Ceramic** DIPs

description

These 10-bit buffers and bus drivers provide a high-performance bus interface for wide data paths or buses carrying parity.

The 3-state control gate is a 2-input AND gate with active-low inputs so that if either output-enable $(\overline{OE1} \text{ or } \overline{OE2})$ input is high, all ten outputs are in the high-impedance state. The 'ABT828 provides inverting data at its outputs.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.


The SN74ABT828 is available in TI's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

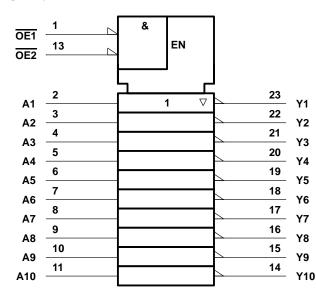
The SN54ABT828 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABT828 is characterized for operation from -40°C to 85°C.

A1 [2 A2 [3 A3 [4 A4 [5 A5 [6 A6 [7 A7 [8 A8 [9 A9 [10 A10 [11 GND [12	24 V _{CC} 23 Y1 22 Y2 21 Y3 20 Y4 19 Y5 18 Y6 17 Y7 16 Y8 15 Y9 14 Y10 13 OE2

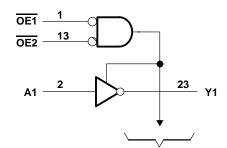
SN54ABT828 ... JT PACKAGE

SN54ABT828 ... FK PACKAGE (TOP VIEW)

NC - No internal connection


RODUCT PREVIEW

SN54ABT828, SN74ABT828 10-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS


SCBS194 - FEBRUARY 1991 - REVISED OCTOBER 1992

FUNCTION TABLE								
	INPUTS	OUTPUT						
OE1	OE2	Α	Y					
L	L	L	Н					
L	L	Н	L					
н	Х	Х	Z					
Х	Н	Х	Z					

logic symbol[†]

logic diagram (positive logic)

To Nine Other Channels

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for the DB, DW, JT, and NT packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high state or power-off state, VO	
Current into any output in the low state, I _O : SN54ABT828	96 mA
SN74ABT828	128 mA
Input clamp current, I _{IK} (V _I < 0)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air): DB package	0.7 W
NT package	1.3 W
DW package	1 W
Storage temperature range	–65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 2)

		SN54ABT828		SN74ABT828		UNIT
		MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage	4.5	5.5	4.5	5.5	V
VIH	High-level input voltage	2		2		V
VIL	Low-level input voltage		0.8		0.8	V
VI	Input voltage	0	VCC	0	VCC	V
ЮН	High-level output current		-24		-32	mA
IOL	Low-level output current		48		64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate		5		5	ns/V
Т _А	Operating free-air temperature	-55	125	-40	85	°C

NOTE 2: Unused or floating inputs must be held high or low.

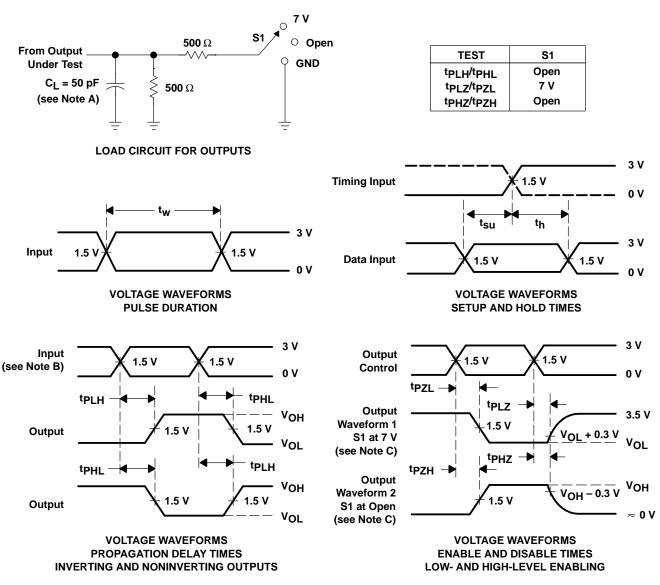
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETER			T _A = 25°C			SN54ABT828		SN74ABT828			
PARAMETER	TEST CONDITIONS			TYP†	MAX	MIN	MAX	MIN	MAX	UNIT	
VIK	$V_{CC} = 4.5 \text{ V}, I_{I} = -18 \text{ mA}$				-1.2		-1.2		-1.2	V	
	$V_{CC} = 4.5 \text{ V}, I_{OH} = -3 \text{ mA}$					2.5		2.5			
Maria	$V_{CC} = 5 V$, $I_{OH} = -3 mA$		3			3		3		v	
VOH	$V_{CC} = 4.5 \text{ V}, I_{OH} = -24 \text{ mA}$		2			2				v	
	$V_{CC} = 4.5 \text{ V}, I_{OH} = -32 \text{ mA}$		2‡					2			
Ve	$V_{CC} = 4.5 \text{ V}, I_{OL} = 48 \text{ mA}$				0.55		0.55	;		v	
VOL	$V_{CC} = 4.5 \text{ V}, I_{OL} = 64 \text{ mA}$				0.55‡				0.55	v	
Ц	$V_{CC} = 5.5 \text{ V}, V_{I} = V_{CC} \text{ or } \text{GND}$				±1		±1		±1	μA	
IOZH	$V_{CC} = 5.5 \text{ V}, V_{O} = 2.7 \text{ V}$				50		50		50	μA	
I _{OZL}	$V_{CC} = 5.5 \text{ V}, V_{O} = 0.5 \text{ V}$				-50		-50		-50	μA	
l _{off}	$V_{CC} = 0,$ VI or $V_O \le 4.5 V$				±100				±100	μA	
ICEX	$V_{CC} = 5.5 \text{ V}, V_{O} = 5.5 \text{ V}$	Outputs high			50		50		50	μA	
۱ _O §	$V_{CC} = 5.5 \text{ V}, V_{O} = 2.5 \text{ V}$		-50	-140	-180	-50	-180	-50	-180	mA	
	$V_{CC} = 5.5 \text{ V}, I_O = 0,$ $V_I = V_{CC} \text{ or GND}$	Outputs high		1	250		250		250	μA	
ICC		Outputs low		24	30		30		30	mA	
		Outputs disabled		0.5	250		250		250	μΑ	
∆ICC¶	V _{CC} = 5.5 V,	Outputs enabled			1.5		1.5		1.5	mA	
	One input at 3.4 V,	Outputs disabled			50		50		50	μΑ	
	Other inputs at V_{CC} or GND	Control inputs			1.5		1.5		1.5	mA	
Ci	V _I = 2.5 V or 0.5 V			4						pF	
Co	V _O = 2.5 V or 0.5 V			7						pF	

† All typical values are at V_{CC} = 5 V.
‡ On products compliant to MIL-STD-883, Class B, this parameter does not apply.

§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.



SN54ABT828, SN74ABT828 **10-BIT BUFFÉRS/DRIVERS** WITH 3-STATE OUTPUTS SCBS194 – FEBRUARY 1991 – REVISED OCTOBER 1992

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, T _A = 25°C			SN54ABT828		SN74ABT828		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
^t PLH	A	Y	1.1	3	4.4	1.1		1.1	4.8	ns
^t PHL			1.1	2.9	4.1	1.1		1.1	4.7	
^t PZH	OE	Y	1.6	3.7	5.1	1.6		1.6	5.9	ns
^t PZL			2.6	4.6	5.9	2.6		2.6	6.9	
^t PHZ	OE	v	2	4.8	6.3	2		2	6.8	ns
^t PLZ	υL		2.5	5.1	6.6	2.5		2.5	6.9	115

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.

C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated