
SCBS180E - JUNE 1992 - REVISED MAY 1997

- Members of the Texas Instruments Widebus+[™] Family
- State-of-the-Art *EPIC-*II*B*[™] BiCMOS Design Significantly Reduces Power Dissipation
- UBE[™] (Universal Bus Exchanger) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical V_{OLP} (Output Ground Bounce)
 < 0.8 V at V_{CC} = 5 V, T_A = 25°C

- High-Impedance State During Power Up and Power Down
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- High-Drive Outputs (–32-mA I_{OH}, 64-mA I_{OL})
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include 80-Pin Plastic Thin Quad Flat (PN) Package With 12 × 12-mm Body Using 0.5-mm Lead Pitch and 84-Pin Ceramic Quad Flat (HT) Package

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus+, EPIC-IIB, and UBE are trademarks of Texas Instruments Incorporated.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1997, Texas Instruments Incorporated

SCBS180E - JUNE 1992 - REVISED MAY 1997

	SN54ABTH32318 HT PACKAGE (TOP VIEW)	
	C 1 0 1 3 4 83 82 81 80 79 77 77 77 77 77 77 77 77 77 77 77 77	
A2 A3 A4 GND A5	1 • 2 3 4 5	63 C8 62 C7 61 C6 60 GND 59 C5
A6 A7 A8 A9 V _{CC}	6 7 8 9 10	58 C4 57 C3 56 C2 55 C1 54 Vcc
NC GND A10 A11 A12		53 NC 52 GND 51 B18 50 B17 49 B16
A13 A14 GND A15 A16	18	48 B15 47 B14 46 GND 45 B13 44 B12
A17	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 4 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 4 EXAMPLE A CONTRACT OF A CONTRACT	43 B11 41 42

description

The 'ABTH32318 consist of three 18-bit registered input/output (I/O) ports. These registers combine D-type latches and flip-flops to allow data flow in transparent, latch, and clock modes. Data from one input port can be exchanged to one or more of the other ports. Because of the universal storage element, multiple combinations of real-time and stored data can be exchanged among the three ports.

Data flow in each direction is controlled by the output-enable (\overline{OEA} , \overline{OEB} , and \overline{OEC}), select-control (SELA, SELB, and SELC), latch-enable (LEA, LEB, and LEC), and clock (CLKA, CLKB, and CLKC) inputs. The A data register operates in the transparent mode when LEA is high. When LEA is low, data is latched if CLKA is held at a high or low logic level. If LEA is low, data is stored on the low-to-high transition of CLKA. Output data selection is accomplished by the select-control pins. All three ports have active-low output enables, so when the output-enable input is low, the outputs are active; when the output-enable input is high, the outputs are in the high-impedance state.

When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

description (continued)

The SN54ABTH32318 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74ABTH32318 is characterized for operation from -40° C to 85° C.

Function Tables

STORAGE[†]

I	OUTPUT		
CLKA	LEA	Α	001901
↑	L	L	L
\uparrow	L	Н	н
Н	L	Х	Q ₀ ‡
L	L	Х	Q ₀ ‡ Q ₀ ‡
х	Н	L	L
Х	Н	Н	н

[†] A-port register shown. B and C ports are similar but use CLKB, CLKC, LEB, and LEC.

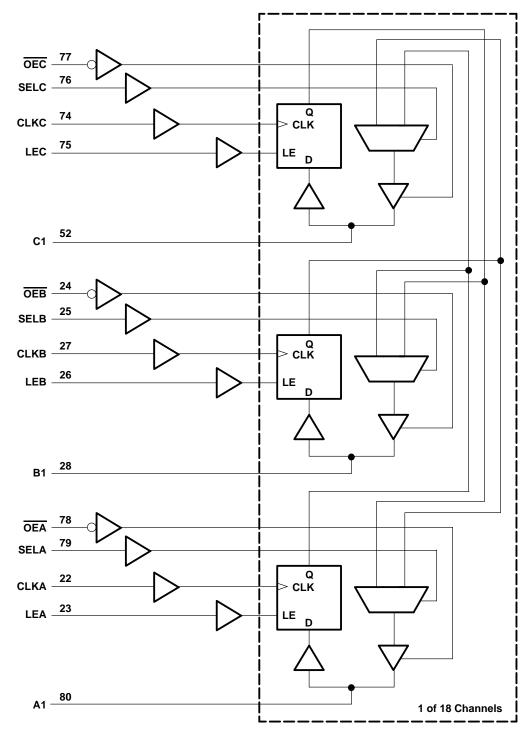
[‡]Output level before the indicated steady-state input conditions were established

A-PORT OUTPUT

INP	UTS	OUTPUT A		
OEA	SELA			
Н	Х	Z		
L	н	Output of C register		
L	L	Output of B register		

B-PORT OUTPUT

INP	UTS	OUTPUT B		
OEB	SELB			
Н	Х	Z		
L	н	Output of A register		
L	L	Output of C register		


C-PORT OUTPUT

INP	UTS	OUTPUT C		
OEC	SELC			
Н	Х	Z		
L	н	Output of B register		
L	L	Output of A register		

SCBS180E - JUNE 1992 - REVISED MAY 1997

logic diagram (positive logic)

Pin numbers shown are for the PN package.

SCBS180E - JUNE 1992 - REVISED MAY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

recommended operating conditions (see Note 3)

				H32318	SN74ABT	H32318	UNIT
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	High-level input voltage		2		2		V
VIL	Low-level input voltage			0.8		0.8	V
VI	Input voltage		00	VCC	0	VCC	V
ЮН	High-level output current		C.Y	-24		-32	mA
IOL	Low-level output current		η_{Q_i}	48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled	RC	10		10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200		200		μs/V
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: Unused control pins must be held high or low to prevent them from floating.

SCBS180E - JUNE 1992 - REVISED MAY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54	ABTH3	2318	SN74ABTH32318				
				MIN	TYP†	MAX	MIN	TYP†	MAX	UNIT	
VIK		V _{CC} = 4.5 V,	lı = –18 mA			-1.2			-1.2	V	
		V _{CC} = 4.5 V,	I _{OH} = –3 mA	2.5			2.5				
		V _{CC} = 5 V,	I _{OH} = –3 mA	3			3			V	
Vон		V _{CC} = 4.5 V	I _{OH} = -24 mA	2							
		VCC = 4.5 V	I _{OH} = -32 mA				2				
VOL		V _{CC} = 4.5 V	I _{OL} = 48 mA			0.55			0.55	v	
VOL		VCC = 4.5 V	I _{OL} = 64 mA			0.55			0.55	v	
V _{hys}					100	4		100		mV	
	Control inputs	V _{CC} = 0 to 5.5 V,	$V_{I} = V_{CC} \text{ or } GND$		1	🖉 ±1			±1	۸	
łį	A, B, or C ports	V _{CC} = 2.1 V to 5.5 V,	$V_{I} = V_{CC} \text{ or } GND$		2E	±20			±20	μA	
1	A, B, or C ports	V _{CC} = 4.5 V	VI = 0.8 V	100	Q		100				
l(hold			VI = 2 V	-100	S		-100			μA	
IOZPL	J [‡]	$V_{CC} = 0$ to 2.1 V, $V_{O} = 0.5$	5 V to 2.7 V, OE = X	ć	8	±50			±50	μA	
IOZPE) [‡]	$V_{CC} = 2.1 V \text{ to } 0, V_{O} = 0.5$	5 V to 2.7 V, OE = X	PA		±50			±50	μA	
loff		$V_{CC} = 0,$	V _I or V _O \leq 4.5 V			±100			±100	μA	
ICEX		$V_{CC} = 5.5 \text{ V}, \text{ V}_{O} = 5.5 \text{ V}$	Outputs high			50			50	μA	
١٥		V _{CC} = 5.5 V,	V _O = 2.5 V	-50	-100	-180	-50	-100	-180	mA	
		V _{CC} = 5.5 V,	Outputs high			2			2		
ICC		$I_{O} = 0,$	Outputs low			45			45	mA	
		$V_{I} = V_{CC}$ or GND	Outputs disabled			1			1		
∆ICC¶		V_{CC} = 5.5 V, One input at Other inputs at V_{CC} or GN				0.5			0.5	mA	
Ci	Control inputs	VI = 2.5 V or 0.5 V			3			3		pF	
Cio	A, B, or C ports	V _O = 2.5 V or 0.5 V			11.5			11.5		pF	

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}C$.

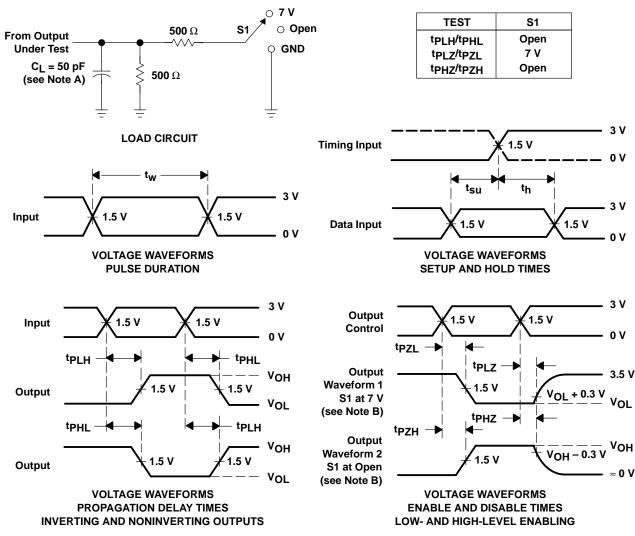
[‡] This parameter is specified by characterization.

§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

	-		SN54ABTH32318		SN74ABTH32318		UNIT	
			MIN	MAX	MIN	MAX	UNIT	
fclock	Clock frequency			150		150	MHz	
	Pulse duration	LE high	3.3	VIE	3.3			
tw		CLK high or low	3.3	RE	3.3		ns	
	Octore there	A, B, or C before CLK↑	2.4	۷.	2.4		ns	
t _{su}	Setup time	A, B, or C before LE \downarrow	2.1		2.1			
		A, B, or C after CLK1	d.4		1.4			
^t h	Hold time	A, B, or C after LE \downarrow	Q 2.1		2.1		ns	


SCBS180E - JUNE 1992 - REVISED MAY 1997

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	FROM TO	SN54ABTI	132318	318 SN74ABTH32318		UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	
f _{max}			150		150		MHz
^t PLH	A, B, or C	C, B, or A	1.4	6.5	1.4	6.1	ns
^t PHL	A, B, 01 C	0, D, 01 A	1.1	6.8	1.1	6.6	115
^t PLH	SEL	A, B, or C	1.4	6.7	1.4	6.5	ns
^t PHL	JLL	A, B, 01 C	1.8	6.8	1.8	6.5	115
^t PLH	LE	A, B, or C	2.6	8	2.6	7.5	ns
^t PHL		A, B, OFC	2.6	7.4	2.6	6.9	115
^t PLH	CLK	A, B, or C	2.5	8	2.5	7.4	ns
^t PHL	CLK	А, В, ОГС	2.5	7.2	2.5	6.7	115
^t PZH		A, B, or C	२ 1.4	6.9	1.4	6.8	ns
^t PZL	OE	A, B, 01 C	2.4	7.2	2.4	7.1	115
^t PHZ	OE	A, B, or C	1	6.4	1	6.2	
^t PLZ		A, B, 01 C	2	6.4	2	6	ns

SCBS180E - JUNE 1992 - REVISED MAY 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.

D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated