SCBS172G - NOVEMBER 1991 - REVISED AUGUST 1997

- Compatible With IEEE Std 1194.1-1991 (BTL)
- TTL A Port, Backplane Transceiver Logic (BTL) B Port
- Open-Collector B-Port Outputs Sink 100 mA
- Isolated Logic-Ground and Bus-Ground Pins Reduce Noise
- BIAS V_{CC} Pin Minimizes Signal Distortion During Live Insertion or Withdrawal

• High-Impedance State During Power Up and Power Down

- B-Port Biasing Network Preconditions the Connector and PC Trace to the BTL High-Level Voltage
- TTL Input Structures Incorporate Active Clamping to Aid in Line Termination
- Package Options Include Plastic Quad Flat (RC) Package and Ceramic Flat (WD) Package

NC - No internal connection

GND 27

NC 28

30 20EA

NC

29

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1997, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

SCBS172G - NOVEMBER 1991 - REVISED AUGUST 1997

description

The 'FB2041A are 7-bit transceivers designed to translate signals between TTL and backplane transceiver logic (BTL) environments. They are specifically designed to be compatible with IEEE Std 1194.1-1991.

The \overline{B} port operates at BTL signal levels. The open-collector \overline{B} ports are specified to sink 100 mA. Two output enables (OEB and \overline{OEB}) are provided for the \overline{B} outputs. When OEB is high and \overline{OEB} is low, the \overline{B} port is active and reflects the inverse of the data present at the A-input pins. When OEB is low, \overline{OEB} is high, or V_{CC} is less than 2.1 V, the \overline{B} port is turned off. The enable/disable logic partitions the device as two 3-bit sections and one 1-bit section.

The A port operates at TTL signal levels and has split input and output pins. The A outputs reflect the inverse of the data at the \overline{B} port when the A-port output enable (OEA) is high. When OEA is low or when V_{CC} is less than 2.1 V, the A outputs are in the high-impedance state.

Pins are allocated for the four-wire IEEE Std 1149.1 (JTAG) test bus. Currently, TMS and TCK are not connected and TDI is shorted to TDO.

BIAS V_{CC} establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when V_{CC} is not connected.

The SN54FB2041A is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74FB2041A is characterized for operation from 0°C to 70°C.

	INPUTS		FUNCTION							
OEB	OEB	OEA	FUNCTION							
L	Х	L	Isolation							
х	Н	L	ISOIALION							
L	Х	Н								
х	Н	Н	B data to AO bus							
Н	L	L	AI data to B bus							
Н	L	Н	AI data to B bus, B data to AO bus							

FUNCTION TABLE

SCBS172G - NOVEMBER 1991 - REVISED AUGUST 1997

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the RC package.

SCBS172G - NOVEMBER 1991 - REVISED AUGUST 1997

functional block diagram

Pin numbers shown are for the RC package.

SCBS172G - NOVEMBER 1991 - REVISED AUGUST 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	V to 7 V to 3.5 V to 3.5 V / to V _{CC}
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	–18 mA . 48 mA 200 mA 79°C/W

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 2)

			SN54FB2041A			SN74FB2041A			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V _{CC,} BIAS V _{CC} , BG V _{CC}	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
Maria	High lovel input veltage	B port	1.62		2.3	1.62		2.3	V
VIH	High-level input voltage	Except B port	2	1	5	2			
		B port	0.75	PE-	1.47	0.75		1.47	v
VIL	Low-level input voltage	Except B port		7	0.8			0.8	v
IК	Input clamp current			5	-18			-18	mA
ЮН	High-level output current	AO port		2	-3			-3	mA
		AO port	2		24			24	~ ^
IOL	Low-level output current B port				100			100	mA
T _A	Operating free-air temperature		-55		125	0		70	°C

NOTE 2: Unused pins (input or I/O) must be held high or low to prevent them from floating.

SCBS172G - NOVEMBER 1991 - REVISED AUGUST 1997

electrical characteristics	over	recommended	operating	free-air	temperature	range	(unless
otherwise noted)					-	•	

		TEST CONDITIONS		SN	54FB204	1A	SN7			
	PARAMETER	IESI C	TEST CONDITIONS			MAX	MIN	TYP†	MAX	UNIT
Mark	B port	V _{CC} = 4.5 V,	l _l = –18 mA			-1.2			-1.2	V
VIK	Except B port	V _{CC} = 4.5 V,	lj = -40 mA			-0.5			-0.5	V
Vau	AO port	V _{CC} = 4.5 V	I _{OH} = -1 mA		3.2					V
VOH	AO pon	VCC = 4.5 V	I _{OH} = –3 mA	2.5	3.3		2.5	3.3		v
	AO port	V _{CC} = 4.5 V	I _{OL} = 20 mA		0.31					
VOL	AO pon	VCC = 4.5 V	I _{OL} = 24 mA		0.35	0.5		0.35	0.5	V
VOL	B nort	V _{CC} = 4.5 V	I _{OL} = 80 mA	0.75		1.1	0.75		1.1	v
	B port	VCC = 4.5 V	I _{OL} = 100 mA			1.15			1.15	
lj	Except B port	$V_{CC} = 5.5 V,$	V _I = 5.5 V			50			50	μΑ
Iн‡	Except B port	V _{CC} = 5.5 V,	V _I = 2.7 V			\$ 50			50	μΑ
IIL [‡] Except B port	Except B port	V _{CC} = 5.5 V,	V _I = 0.5 V	_50					-50	•
	B port	V _{CC} = 5.5 V,	V _I = 0.75 V		RE	-100			-100	μA
ЮН	B port	$V_{CC} = 0$ to 5.5 V,	V _O = 2.1 V		5	100			100	μA
IOZH	AO port	V _{CC} = 5.5 V,	V _O = 2.7 V		2	50			50	μA
IOZL	AO port	V _{CC} = 5.5 V,	V _O = 0.5 V	00	5	-50			-50	μΑ
IOZPU§	AO port	$V_{CC} = 0$ to 2.1 V,	V_{O} = 0.5 V to 2.7 V	Q		50			50	μΑ
IOZPD [§]	AO port	V _{CC} = 2.1 V to 0,	V_{O} = 0.5 V to 2.7 V			-50			-50	μA
los¶	AO port	V _{CC} = 5.5 V,	V _O = 0	-30		-150	-30		-180	mA
	AI port to B port		-			45			45	
ICC	B port to AO port	V _{CC} = 5.5 V,	IO = 0			65			65	mA
0	AI port							3		~
Ci	Control inputs	V _I = 0.5 V or 2.5 V						3		pF
Co	AO port	$V_{O} = 0.5 \text{ V or } 2.5 \text{ V}$	/					5.5		pF
0.6	B port per	$V_{CC} = 0 \text{ to } 4.5 \text{ V}$				6			5	۶E
C _{i0} §		V _{CC} = 4.5 V to 5.5 V				5			5	pF

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

 \ddagger For I/O ports, the parameters IIH and IIL include the off-state output current.

§ This parameter is warranted but not production tested.

¶ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

live-insertion specifications over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS			2041A	SN74FB2041A		UNIT
			TEST CONDITIONS			MIN	MAX	UNIT
I _{CC} (BIAS V _{CC})		V_{CC} = 0 to 4.5 V	$V_{B} = 0$ to 2 V, V_{I} (BIAS V_{CC}) = 4.5 V to 5.5 V		450		450	μA
ICC (BI		V_{CC} = 4.5 V to 5.5 V	VB = 0.02 V, V[(BIAS VCC) = 4.3 V 10 3.3 V]		Ly 10		10	μΑ
VO	B port	$V_{CC} = 0,$	V_{I} (BIAS V_{CC}) = 5 V	1.62	2.1	1.62	2.1	V
		$V_{CC} = 0,$	$V_B = 1 \text{ V},$ $V_I (BIAS V_{CC}) = 4.5 \text{ V to } 5.5 \text{ V}$	F)		-1		
IO	B port	$V_{CC} = 0$ to 5.5 V,	OEB = 0 to 0.8 V	00	100		100	μΑ
		$V_{CC} = 0$ to 2.2 V,	OEB = 0 to 5 V	by	100		100	

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SCBS172G - NOVEMBER 1991 - REVISED AUGUST 1997

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

PAR	AMETER	FROM	TO (OUTPUT)		V _{CC} = 5 V, T _A = 25°C			SN54FB2041A		SN74FB2041A	
		(INPUT)		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
^t PLH		AI	B	2.3	3.9	5.1			2	5.6	ns
^t PHL		AI	В	2.6	4.1	5			2.5	5.3	115
^t PLH		B	AO	2	3.6	4.8			1.7	5.3	ns
^t PHL		В	AO	2.3	3.8	4.9			2	6.4	115
^t PLH		OEB	B	3	4.6	5.8			2.6	6.3	ns
^t PHL		UEB		3.1	4.7	6		Elv.	3.1	6.2	
^t PLH		OEB	B	2.7	4.3	5.6		N.	2.6	5.8	ns
^t PHL		OEB		2.7	4.2	5.3	- C		2.5	6.4	
^t PZH		OEA	AO	1.5	3.2	5.2	6		1.5	5.2	ns ns
^t PZL		OLA		1.1	2.8	5	200		1	5	
^t PHZ		OEA	AO	1	2.4	3.9	Ro		1	4.2	
^t PLZ		OLA		2.2	3.8	5.6	Y		1.7	5.8	
t _{sk(p)} †	Skew for any single channel, tp _{HL} – tp _{LH} Al to B or B to AO				0.5						ns
t _{sk(o)} †	Skew between drivers in the same package, AI to \overline{B} or \overline{B} to AO				0.4						ns
Rise time, 1.		e, 1.3 V to 1.8 V, B outputs			1.6	2.4			1	2.5	
tt	Fall time, 1.8 V to 1.3 V, B outputs				1.4	2.3			1	2.4	ns
^t (pr)	B-port input	pulse rejection		1					1		ns

[†] Skew values are applicable for through mode only.

SCBS172G - NOVEMBER 1991 - REVISED AUGUST 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: TTL inputs: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns; BTL inputs: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated