SCBS149C - JULY 1994 - REVISED JULY 1995

 State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power 	SN54LVT16646 SN74LVT16646 DO (TOP \ 	G OR DL PACKAGE
Dissipation		56] 1 0E
Members of the Texas Instruments	1DIR 1 1 1CLKAB 2	55] 1CLKBA
<i>Widebus</i> ™ Family		54 SAL 1SBA
Support Mixed-Mode Signal Operation (5-V	GND 4	53 GND
Input and Output Voltages With 3.3-V V_{CC})		52 1B1
 Support Unregulated Battery Operation 	1A1 L3 1A2 6	51 1B2
Down to 2.7 V		50 V _{CC}
		49 1B3
• Typical V _{OLP} (Output Ground Bounce)	1A4 🛛 9	48 1 1B4
< 0.8 V at V_{CC} = 3.3 V, T_A = 25°C	1A5 [] 10	47 1B5
ESD Protection Exceeds 2000 V Per	GND 11	46 GND
MIL-STD-883C, Method 3015; Exceeds	1A6 12	45 1B6
200 V Using Machine Model (C = 200 pF, R = 0)	1A7 13	44 🛛 1B7
	1A8 🛛 14	43 🛛 1B8
Latch-Up Performance Exceeds 500 mA	2A1 🚺 15	42 🛛 2B1
Per JEDEC Standard JESD-17	2A2 🚺 16	41 🛛 2B2
Bus-Hold Data Inputs Eliminate the Need	2A3 🚺 17	40] 2B3
for External Pullup Resistors	GND 🚺 18	39 🛛 GND
 Support Live Insertion 	2A4 🛿 19	38 🛛 2B4
Distributed V _{CC} and GND Pin Configuration	2A5 🛛 20	37 🛛 2B5
Minimizes High-Speed Switching Noise	2A6 21	36 2 2B6
Flow-Through Architecture Optimizes	V _{CC} 22	35 🛛 V _{CC}
PCB Layout	2A7 🛛 23	34 2 B7
Package Options Include Plastic 300-mil	2A8 24	33 2B8
Shrink Small-Outline (DL) and Thin Shrink	GND 25	32 GND
Small-Outline (DGG) Packages and 380-mil		31 2SBA
Fine-Pitch Ceramic Flat (WD) Package		30 2CLKBA
Using 25-mil Center-to-Center Spacings	2DIR 28	29 20E

description

The 'LVT16646 are 16-bit bus transceivers designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

These devices can be used as two 8-bit transceivers or one 16-bit transceiver. Data on the A or B bus is clocked into the registers on the low-to-high transition of the appropriate clock (CLKAB or CLKBA) input. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'LVT16646.

Output-enable (\overline{OE}) and direction-control (DIR) inputs are provided to control the transceiver functions. In the transceiver mode, data present at the high-impedance port may be stored in either register or in both. The select-control (SAB and SBA) inputs can multiplex stored and real-time (transparent mode) data. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. The direction control (DIR) determines which bus receives data when \overline{OE} is low. In the isolation mode (\overline{OE} high), A data may be stored in one register and/or B data may be stored in the other register.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments Incorporated

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1995, Texas Instruments Incorporated

SN54LVT16646, SN74LVT16646 **3.3-V ABT 16-BIT BUS TRANSCEIVERS** WITH 3-STATE OUTPUTS SCBS149C - JULY 1994 - REVISED JULY 1995

description (continued)

When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two buses, A or B, may be driven at a time.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74LVT16646 is available in TI's shrink small-outline (DL) and thin shrink small-outline (DGG) packages, which provide twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54LVT16646 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74LVT16646 is characterized for operation from -40°C to 85°C.

INPUTS		DATA	A I/Os	OPERATION OR FUNCTION								
OE	DIR	CLKAB	CLKBA	SAB	SBA	A1 THRU A8	B1 THRU B8	OFERATION OR FUNCTION				
Х	Х	\uparrow	Х	Х	Х	Input	Unspecified [†]	Store A, B unspecified [†]				
х	Х	Х	\uparrow	Х	Х	Unspecified [†]	Input	Store B, A unspecified [†]				
Н	Х	\uparrow	\uparrow	Х	Х	Input	Input	Store A and B data				
н	Х	H or L	H or L	Х	Х	Input disabled	Input disabled	Isolation, hold storage				
L	L	Х	Х	Х	L	Output	Input	Real-time B data to A bus				
L	L	Х	H or L	Х	Н	Output	Input	Stored B data to A bus				
L	Н	Х	Х	L	Х	Input	Output	Real-time A data to B bus				
L	Н	H or L	Х	Н	Х	Input	Output	Stored A data to B bus				

ELINCTION TABLE

[†] The data output functions may be enabled or disabled by various signals at OE and DIR. Data input functions are always enabled; i.e., data at the bus pins will be stored on every low-to-high transition of the clock inputs.

SCBS149C - JULY 1994 - REVISED JULY 1995

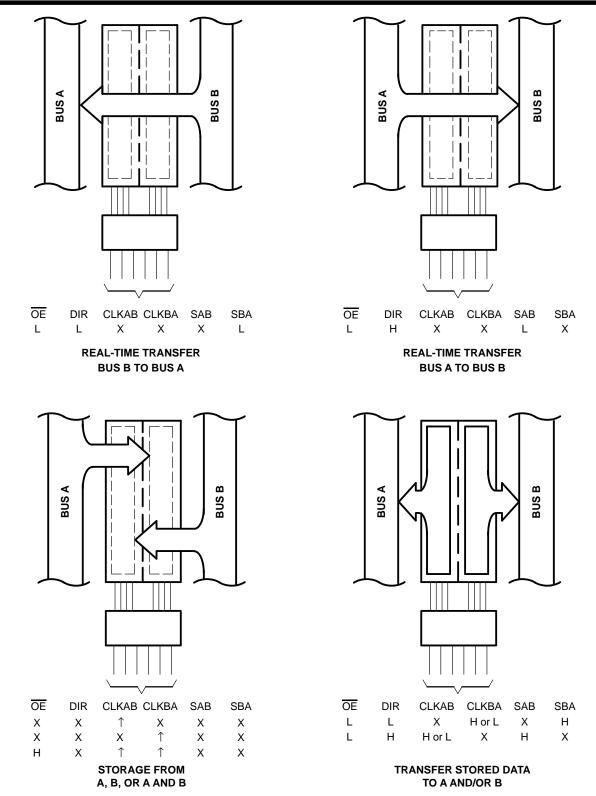
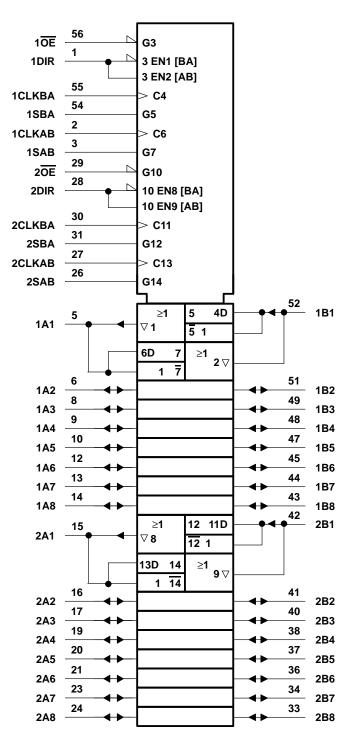
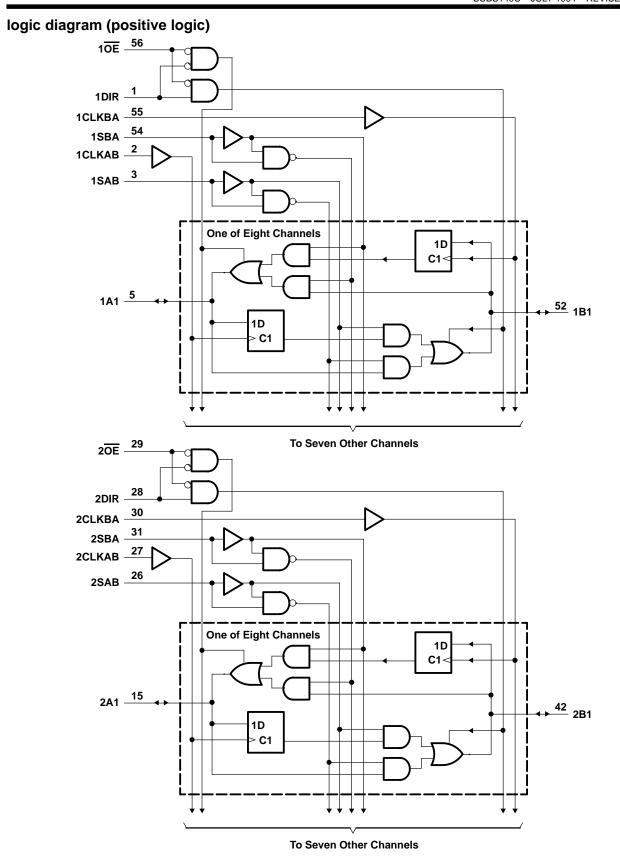



Figure 1. Bus-Management Functions

SCBS149C - JULY 1994 - REVISED JULY 1995


logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SN54LVT16646, SN74LVT16646 3.3-V ABT 16-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS SCBS149C – JULY 1994 – REVISED JULY 1995

SCBS149C - JULY 1994 - REVISED JULY 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	
Input voltage range, V _I (see Note 1)	
Current into any output in the low state, I _O : SN54LVT16646	
SN74LVT16646	
Current into any output in the high state, I _O (see Note 2): SN54LVT16646	
SN74LVT16646	64 mA
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I_{OK} (V _O < 0)	–50 mA
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 3): DGG package	1 W
DL package	1.4 W
Storage temperature range, T _{stg} –	65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$.

3. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the *Package Thermal Considerations* application note in the 1994 *ABT Advanced BiCMOS Technology Data Book*, literature number SCBD002B.

recommended operating conditions (see Note 4)

			SN54LV	T16646	SN74LV	T16646	UNIT
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		2.7	3.6	2.7	3.6	V
VIH	High-level input voltage		2	EW	2		V
VIL	Low-level input voltage			0.8		0.8	V
VI	Input voltage			5.5		5.5	V
ЮН	High-level output current		C,	-24		-32	mA
IOL	Low-level output current		γ_{Q_i}	48		64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled	R	10		10	ns/V
Τ _Α	Operating free-air temperature		-55	125	-40	85	°C

NOTE 4: Unused control inputs must be held high or low to prevent them from floating.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SCBS149C - JULY 1994 - REVISED JULY 1995

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			SN	54LVT16	646	SN7	UNIT			
FARAINETER		TEST CONDITIONS		MIN	TYP†	MAX	MIN	TYP†	MAX	UNIT
VIK	V _{CC} = 2.7 V,	lı = –18 mA				-1.2			-1.2	V
	$V_{CC} = MIN \text{ to } MAX^{\ddagger}$, I _{OH} = –100 μA		V _{CC} -0).2		V _{CC} -0	.2		
Maria	V _{CC} = 2.7 V,	I _{OH} = – 8 mA		2.4			2.4			v
VOH	V _{CC} = 3 V	I _{OH} = - 24 mA		2						v
	vCC = 3 v	$I_{OH} = -32 \text{ mA}$					2			
	V _{CC} = 2.7 V	I _{OL} = 100 μA				0.2			0.2	
Ň	VCC = 2.7 V	I _{OL} = 24 mA				0.5			0.5	
Ve		I _{OL} = 16 mA				0.4			0.4	v
VOL	$V_{CC} = 3 V$	I _{OL} = 32 mA				0.5	0.5] `
	VCC = 3 V	I _{OL} = 48 mA			0.55					
		I _{OL} = 64 mA				M:				
V _{CC} = 3.6 V,		$V_I = V_{CC} \text{ or } GND$	Control inputs			±1			±1	
lj	$V_{CC} = 0 \text{ or MAX}^{\ddagger},$	Vj = 5.5 V	Control inputs	<u> </u>		10				
	V _{CC} = 3.6 V	VI = 5.5 V			20 20 5			20		
		$V_I = V_{CC}$	A or B ports§						5	
		$V_{I} = 0$		AO AO		-10			-10	
loff	$V_{CC} = 0,$	V_{I} or $V_{O} = 0$ to 4.5	5 V	Y					±100	μA
ha is	$V_{CC} = 3 V$	V _I = 0.8 V	A or B ports	75			75			μA
l(hold)	vCC = 3 v	V _I = 2 V	A of B poils	-75			-75			μA
IOZH	V _{CC} = 3.6 V,	V _O = 3 V				1			1	μA
IOZL	V _{CC} = 3.6 V,	$V_{O} = 0.5 V$				-1		-1	μA	
			Outputs high			0.12			0.12	
ICC	$V_{CC} = 3.6 V,$ $V_{I} = V_{CC} \text{ or GND}$	I _O = 0,	Outputs low	5		5		5	mA	
			Outputs disabled	0.12			0.12			
${}^{\Delta I}CC^{\P}$	V_{CC} = 3 V to 3.6 V, Other inputs at V _{CC}		– 0.6 V,			0.2			0.2	mA
Ci	V _I = 3 V or 0				3.5			3.5		pF
C _{io}	V _O = 3 V or 0				12			12		pF

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. [‡] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 $\$ Unused pins at V_CC or GND

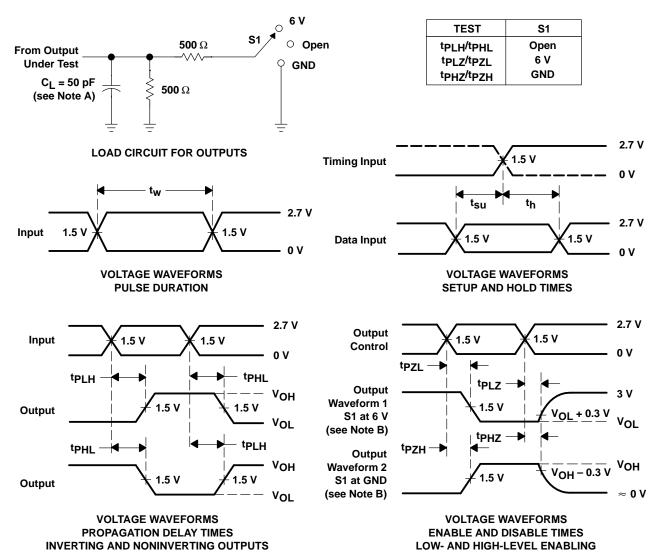
I This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCBS149C - JULY 1994 - REVISED JULY 1995

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

			SN54LV	T16646			SN74LV	T16646			
			×CC = ± 0.3	3.3 V 3 V	V _{CC} =	2.7 V	= ۷ _{CC} ± 0.	3.3 V 3 V	V _{CC} =	2.7 V	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequency		0	150	50	150	0	150	0	150	MHz
tw	Pulse duration, CLK high or low		3.3		3.3		3.3		3.3		ns
+	Setup time,	Data high	1.3	Å	1.4		1.3		1.4		ns
^t su	A or B before CLKAB \uparrow or CLKBA \uparrow	Data low	2.4	DU,	3		2.4		3		115
Hold time,	Data high	0.5	90°	0		0.5		0		20	
^t h	A or B after CLKAB \uparrow or CLKBA \uparrow	Data low	0.6	Q	0.5		0.5		0.5		ns

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 2)


				SN54LV	T16646			SN7	4LVT16	646		
PARAMETER	FROM (INPUT)	TO (OUTPUT)				V _{CC} = 3.3 V ± 0.3 V			V _{CC} = 2.7 V			
			MIN	MAX	MIN	MAX	MIN	TYP†	MAX	MIN	MAX	
f _{max}			150				150					MHz
^t PLH	CLKBA or	A or B	1.8	6		6.9	1.8	3.8	5.7		6.7	ns
^t PHL	CLKAB	AUP	2.1	5.9		6.6	2.1	3.9	5.7		6.5	115
^t PLH	A or B	B or A	1.3	4.9	M	5.6	1.3	3	4.7		5.4	ns
^t PHL	AUB		1	4.8	JIA	5.8	1	3.1	4.7		5.6	115
^t PLH	SBA or SAB‡	A or B	1.4	6.4	34	7.4	1.4	4	6.2		7.2	ns
^t PHL	SBA UI SAB+	AUB	1.4	6.4	LF	7.4	1.4	4.3	6.2		7.2	115
^t PZH	OE	A or B	1	5.7		7.4	1	3	5.4		6.4	ns
^t PZL	UE	AUP	1	6.5		7.5	1	3.1	5.6		6.5	115
^t PHZ	OE	A or B	2.3	6.7		7.1	2.3	4.6	6.5		6.9	ns
^t PLZ	ÛE	AOIB	2.2	6		6.5	2.2	4.5	5.8		5.9	115
^t PZH	DIR	A or B	1	5.9		7.7	1	3.3	5.7		6.7	ns
^t PZL		A 01 B	1.2	5.9		7.3	1.2	3.5	5.8		6.7	115
^t PHZ	DIR	A or B	1.7	7.3		8.5	1.7	4.7	7.2		8.3	8.3
^t PLZ		AUB	1.5	7.8		7.4	1.5	4.9	6.6		7.2	ns

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡]These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

SCBS149C - JULY 1994 - REVISED JULY 1995

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated