SCBS148C - MAY 1992 - REVISED JULY 1995

| <ul> <li>State-of-the-Art Advanced BiCMOS<br/>Technology (ABT) Design for 3.3-V<br/>Operation and Low-Static Power</li> </ul> | SN54LVT16543 WD PACKAGE<br>SN74LVT16543 DGG OR DL PACK<br>(TOP VIEW) |  |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|
| Dissipation                                                                                                                   |                                                                      |  |
| <ul> <li>Members of the Texas Instruments</li> </ul>                                                                          |                                                                      |  |
| <i>Widebus</i> ™ Family                                                                                                       |                                                                      |  |
| <ul> <li>Support Mixed-Mode Signal Operation (5-V</li> </ul>                                                                  |                                                                      |  |
| Input and Output Voltages With 3.3-V V <sub>CC</sub> )                                                                        | 1A1 <b>5</b> 52 <b>1</b> B1                                          |  |
| Support Unregulated Battery Operation                                                                                         | 1A2 6 51 B2                                                          |  |
| Down to 2.7 V                                                                                                                 | V <sub>CC</sub> []7 50 ] V <sub>CC</sub>                             |  |
| <ul> <li>Typical V<sub>OLP</sub> (Output Ground Bounce)</li> </ul>                                                            | 1A3 🛛 8 49 🗍 1B3                                                     |  |
| < 0.8 V at $V_{CC}$ = 3.3 V, $T_{A}$ = 25°C                                                                                   | 1A4 🛛 9 🛛 48 🗋 1B4                                                   |  |
| • ESD Protection Exceeds 2000 V Per                                                                                           | 1A5 🛛 10 47 🗋 1B5                                                    |  |
| MIL-STD-883C, Method 3015; Exceeds                                                                                            | GND 11 46 GND                                                        |  |
| 200 V Using Machine Model                                                                                                     | 1A6 <b>1</b> 2 45 1B6                                                |  |
| (C = 200  pF, R = 0)                                                                                                          | 1A7 <b>1</b> 13 44 1B7                                               |  |
| Latch-Up Performance Exceeds 500 mA                                                                                           | 1A8 14 43 188                                                        |  |
| Per JEDEC Standard JESD-17                                                                                                    | 2A1 15 42 2B1                                                        |  |
| <ul> <li>Bus-Hold Data Inputs Eliminate the Need</li> </ul>                                                                   | 2A2 16 41 2B2                                                        |  |
| for External Pullup Resistors                                                                                                 | 2A3 17 40 2B3                                                        |  |
| Support Live Insertion                                                                                                        |                                                                      |  |
|                                                                                                                               | 2A4 []19   38 [] 2B4<br>2A5 []20   37 [] 2B5                         |  |
| <ul> <li>Distributed V<sub>CC</sub> and GND Pin Configuration</li> </ul>                                                      | 2A5 120 37 12B5<br>2A6 21 36 2B6                                     |  |
| Minimizes High-Speed Switching Noise                                                                                          | $V_{CC}$ [22 35] $V_{CC}$                                            |  |
| <ul> <li>Flow-Through Architecture Optimizes</li> </ul>                                                                       | 2A7 23 34 2B7                                                        |  |
| PCB Layout                                                                                                                    | 2A8 24 33 2B8                                                        |  |
| Package Options Include Plastic 300-mil                                                                                       | GND 25 32 GND                                                        |  |
| Shrink Small-Outline (DL) and Thin Shrink                                                                                     |                                                                      |  |
| Small-Outline (DGG) Packages and 380-mil                                                                                      | 2LEAB 27 30 2LEBA                                                    |  |
| Fine-Pitch Ceramic Flat (WD) Package                                                                                          | 20EAB 28 29 20EBA                                                    |  |
| Using 25-mil Center-to-Center Spacings                                                                                        |                                                                      |  |

#### description

The 'LVT16543 are 16-bit registered transceivers designed for low-voltage (3.3-V)  $V_{CC}$  operation, but with the capability to provide a TTL interface to a 5-V system environment. These devices can be used as two 8-bit transceivers or one 16-bit transceiver. Separate latch-enable (LEAB or LEBA) and output-enable (OEAB or OEBA) inputs are provided for each register to permit independent control in either direction of data flow.

The A-to-B enable ( $\overline{CEAB}$ ) input must be low in order to enter data from A or to output data from B. If  $\overline{CEAB}$  is low and  $\overline{LEAB}$  is low, the A-to-B latches are transparent; a subsequent low-to-high transition of  $\overline{LEAB}$  puts the A latches in the storage mode. With  $\overline{CEAB}$  and  $\overline{OEAB}$  both low, the 3-state B outputs are active and reflect the data present at the output of the A latches. Data flow from B to A is similar but requires using the  $\overline{CEBA}$ ,  $\overline{LEBA}$ , and  $\overline{OEBA}$  inputs.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.



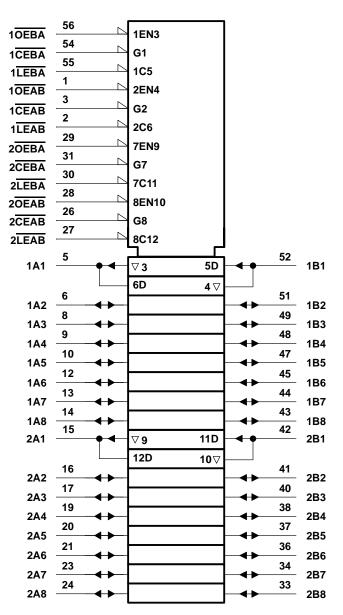
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments Incorporated

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 1995, Texas Instruments Incorporated

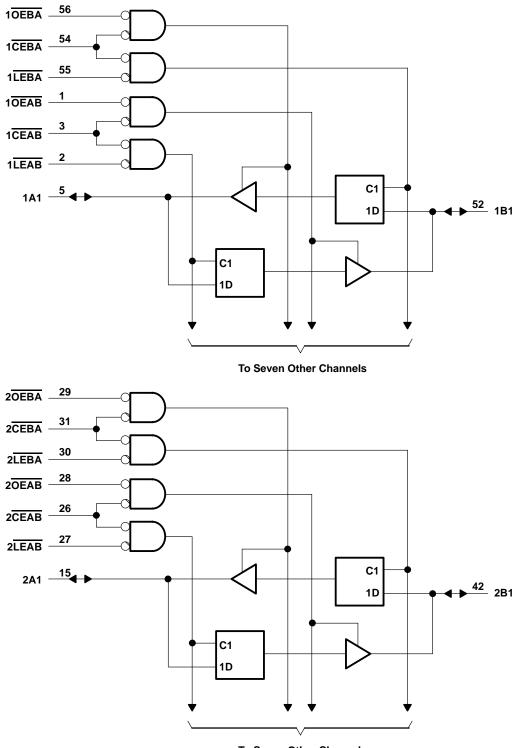

### description (continued)

To ensure the high-impedance state during power up or power down,  $\overline{OE}$  should be tied to V<sub>CC</sub> through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74LVT16543 is available in TI's shrink small-outline (DL) and thin shrink small-outline (DGG) packages, which provide twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54LVT16543 is characterized for operation over the full military temperature range of  $-55^{\circ}$ C to  $125^{\circ}$ C. The SN74LVT16543 is characterized for operation from  $-40^{\circ}$ C to  $85^{\circ}$ C.

### logic symbol<sup>†</sup>




<sup>†</sup> This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.



SCBS148C - MAY 1992 - REVISED JULY 1995

### logic diagram (positive logic)



To Seven Other Channels



SCBS148C - MAY 1992 - REVISED JULY 1995

# FUNCTION TABLET

| (each o-bit section) |                        |                                                        |                             |  |  |  |  |  |  |  |
|----------------------|------------------------|--------------------------------------------------------|-----------------------------|--|--|--|--|--|--|--|
| INPUTS               |                        |                                                        |                             |  |  |  |  |  |  |  |
| LEAB                 | OEAB                   | Α                                                      | В                           |  |  |  |  |  |  |  |
| Х                    | Х                      | Х                                                      | Z                           |  |  |  |  |  |  |  |
| Х                    | Н                      | Х                                                      | Z                           |  |  |  |  |  |  |  |
| Н                    | L                      | Х                                                      | в <sub>0</sub> ‡            |  |  |  |  |  |  |  |
| L                    | L                      | L                                                      | L                           |  |  |  |  |  |  |  |
| L                    | L                      | Н                                                      | Н                           |  |  |  |  |  |  |  |
|                      | INPL<br>LEAB<br>X<br>X | INPUTS       LEAB     OEAB       X     X       X     H | INPUTSLEABOEABAXXXXHXHLXLLL |  |  |  |  |  |  |  |

<sup>†</sup> A-to-B data flow is shown; <u>B-to-A flow control is the</u>

same except that it uses CEBA, LEBA, and OEBA.

<sup>‡</sup>Output level before the indicated steady-state input

conditions were established

### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)§

| Supply voltage range, V <sub>CC</sub><br>Input voltage range, V <sub>I</sub> (see Note 1)           |        |
|-----------------------------------------------------------------------------------------------------|--------|
| Voltage range applied to any output in the high state or power-off state, $V_{\Omega}$ (see Note 1) |        |
| Current into any output in the low state, IO: SN54LVT16543                                          | 96 mA  |
| SN74LVT16543                                                                                        | 128 mA |
| Current into any output in the high state, I <sub>O</sub> (see Note 2): SN54LVT16543                | 48 mA  |
| SN74LVT16543                                                                                        | 64 mA  |
| Input clamp current, I <sub>IK</sub> (V <sub>I</sub> < 0)                                           | –50 mA |
| Output clamp current, $I_{OK}$ (V <sub>O</sub> < 0)                                                 | –50 mA |
| Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 3): DGG package           | 1 W    |
| DL package                                                                                          | 1.4 W  |
| Storage temperature range, T <sub>stg</sub>                                                         |        |

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

- 2. This current flows only when the output is in the high state and  $V_O > V_{CC}$ .
- 3. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the *Package Thermal Considerations* application note in the 1994 *ABT Advanced BiCMOS Technology Data Book*, literature number SCBD002B.

#### recommended operating conditions (see Note 4)

|                     |                                    |                 | SN54LV | SN54LVT16543 |     | 'T16543 | UNIT |
|---------------------|------------------------------------|-----------------|--------|--------------|-----|---------|------|
|                     |                                    |                 | MIN    | MAX          | MIN | MAX     | UNIT |
| VCC                 | Supply voltage                     |                 | 2.7    | 3.6          | 2.7 | 3.6     | V    |
| VIH                 | High-level input voltage           | 2               | EW     | 2            |     | V       |      |
| VIL                 | Low-level input voltage            |                 | 0.8    |              | 0.8 | V       |      |
| VI                  | Input voltage                      |                 | 5.5    |              | 5.5 | V       |      |
| ЮН                  | High-level output current          |                 | Ċ,     | -24          |     | -32     | mA   |
| IOL                 | Low-level output current           | 201             | 48     |              | 64  | mA      |      |
| $\Delta t/\Delta v$ | Input transition rise or fall rate | Outputs enabled | 4      | 10           |     | 10      | ns/V |
| Τ <sub>Α</sub>      | Operating free-air temperature     |                 | -55    | 125          | -40 | 85      | °C   |

NOTE 4: Unused control inputs must be held high or low to prevent them from floating.



SCBS148C - MAY 1992 - REVISED JULY 1995

### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER          | TEST CONDITIONS                                               |                               |                         |                    | 54LVT16 | 543  | SN7                | 4LVT16 | 543  |      |  |
|--------------------|---------------------------------------------------------------|-------------------------------|-------------------------|--------------------|---------|------|--------------------|--------|------|------|--|
|                    |                                                               | IEST CONDITIONS               |                         | MIN                | TYP†    | MAX  | MIN                | TYP†   | MAX  | UNIT |  |
| VIK                | V <sub>CC</sub> = 2.7 V,                                      | lı = –18 mA                   |                         |                    |         | -1.2 |                    |        | -1.2 | V    |  |
|                    | $V_{CC} = MIN \text{ to } MAX^{\ddagger}$                     | , I <sub>OH</sub> = –100 μA   |                         | V <sub>CC</sub> -0 | ).2     |      | V <sub>CC</sub> -0 | .2     |      |      |  |
| Maria              | V <sub>CC</sub> = 2.7 V,                                      | 2.4                           |                         |                    | 2.4     |      |                    | v      |      |      |  |
| VOH                | V <sub>CC</sub> = 3 V                                         | I <sub>OH</sub> = – 24 mA     |                         | 2                  |         |      |                    |        |      | v    |  |
|                    | vCC = 3 v                                                     | $I_{OH} = -32 \text{ mA}$     |                         |                    |         |      | 2                  |        |      |      |  |
|                    | 1/22 - 27/1                                                   | I <sub>OL</sub> = 100 μA      |                         |                    |         | 0.2  |                    |        | 0.2  |      |  |
|                    | V <sub>CC</sub> = 2.7 V                                       | I <sub>OL</sub> = 24 mA       |                         |                    |         | 0.5  |                    |        | 0.5  |      |  |
| V <sub>OL</sub>    |                                                               | I <sub>OL</sub> = 16 mA       | I <sub>OL</sub> = 16 mA |                    |         | 0.4  | 0.4                |        |      |      |  |
|                    | V <sub>CC</sub> = 3 V                                         | I <sub>OL</sub> = 32 mA       |                         |                    | 0.5     |      |                    | 0.5    | v    |      |  |
|                    | $v_{CC} = 3 v$                                                | I <sub>OL</sub> = 48 mA       | 0.55                    |                    |         |      |                    |        |      |      |  |
|                    |                                                               | I <sub>OL</sub> = 64 mA       |                         |                    |         | M:   |                    |        | 0.55 |      |  |
|                    | V <sub>CC</sub> = 3.6 V,                                      |                               | Control inputs          |                    |         | ±1   |                    |        | ±1   |      |  |
|                    | $V_{CC} = 0 \text{ or MAX}^{\ddagger},$                       | Vj = 5.5 V                    | Control inputs          |                    | 4       | 10   |                    |        | 10   |      |  |
| Ц                  | V <sub>CC</sub> = 3.6 V                                       | V <sub>I</sub> = 5.5 V        |                         |                    | 5       | 20   |                    |        | 20   | μA   |  |
|                    |                                                               | $V_I = V_{CC}$                | A or B ports§           | na                 |         | 5    |                    |        | 5    |      |  |
|                    |                                                               | $V_{I} = 0$                   |                         | 4                  | 2       | -10  |                    |        | -10  |      |  |
| loff               | $V_{CC} = 0,$                                                 | $V_{I}$ or $V_{O} = 0$ to 4.5 | 5 V                     | Y                  |         |      |                    |        | ±100 | μA   |  |
| 1. <i>a</i>        | $\lambda = -2\lambda$                                         | V <sub>I</sub> = 0.8 V        | A or B ports            | 75                 |         |      | 75                 |        |      |      |  |
| l(hold)            | V <sub>CC</sub> = 3 V                                         | V <sub>I</sub> = 2 V          | A OF B POILS            | -75                |         |      | -75                |        |      | μA   |  |
| IOZH               | V <sub>CC</sub> = 3.6 V,                                      | $V_{O} = 3 V$                 |                         |                    |         | 1    |                    |        | 1    | μA   |  |
| IOZL               | V <sub>CC</sub> = 3.6 V,                                      | $V_{O} = 0.5 V$               |                         |                    |         | -1   |                    |        | -1   | μA   |  |
|                    |                                                               |                               | Outputs high            | 0.12               |         |      |                    | 0.12   |      |      |  |
| ICC                | $V_{CC} = 3.6 V,$<br>$V_{I} = V_{CC} \text{ or GND}$          | $I_{O} = 0,$                  | Outputs low             |                    |         | 5    | 5                  |        |      | mA   |  |
|                    |                                                               | Outputs disabled              |                         |                    | 0.12    |      |                    | 0.12   |      |      |  |
| ∆I <sub>CC</sub> ¶ | $V_{CC} = 3 V \text{ to } 3.6 V,$<br>Other inputs at $V_{CC}$ |                               | – 0.6 V,                |                    |         | 0.2  |                    |        | 0.2  | mA   |  |
| Ci                 | V <sub>I</sub> = 3 V or 0                                     |                               |                         |                    |         |      |                    | 4      |      | pF   |  |
| C <sub>io</sub>    | $V_{O} = 3 V \text{ or } 0$                                   |                               |                         |                    | 13      |      |                    | 13     |      | pF   |  |

<sup>†</sup> All typical values are at  $V_{CC}$  = 3.3 V,  $T_A$  = 25°C. <sup>‡</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 $\$  Unused pins at V<sub>CC</sub> or GND

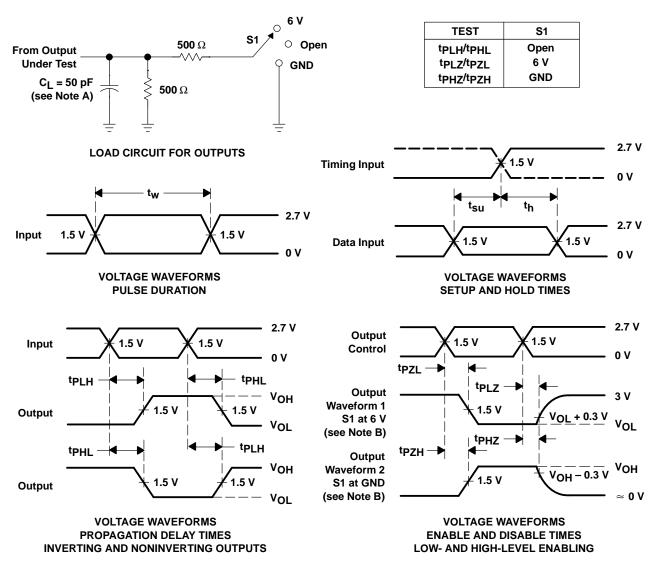
This is the increase in supply current for each input that is at the specified TTL voltage level rather than V<sub>CC</sub> or GND.



SCBS148C - MAY 1992 - REVISED JULY 1995

### timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

|                                     |               |                                 |           | SN54LVT16543                       |        |                         |     | SN74LVT16543                       |     |                         |     |      |
|-------------------------------------|---------------|---------------------------------|-----------|------------------------------------|--------|-------------------------|-----|------------------------------------|-----|-------------------------|-----|------|
|                                     |               |                                 |           | V <sub>CC</sub> = 3.3 V<br>± 0.3 V |        | V <sub>CC</sub> = 2.7 V |     | V <sub>CC</sub> = 3.3 V<br>± 0.3 V |     | V <sub>CC</sub> = 2.7 V |     | UNIT |
|                                     |               |                                 |           | MIN                                | MAX    | MIN                     | MAX | MIN                                | MAX | MIN                     | MAX |      |
| tw Pulse duration, LEAB or LEBA low |               | 3.3                             |           | 3.3                                |        | 3.3                     |     | 3.3                                |     | ns                      |     |      |
|                                     |               | A or B before CEAB1 or     Data | Data high | 0.8                                |        | 0.5                     | ,   | 0.8                                |     | 0.5                     |     | ns   |
|                                     | Catura time a |                                 | Data low  | 1.5                                |        | 1.9                     |     | 1.5                                |     | 1.9                     |     | 115  |
| t <sub>su</sub>                     | Setup time    |                                 | Data high | 0.7                                |        | 0.4                     |     | 0.7                                |     | 0.4                     |     |      |
|                                     |               |                                 | Data low  | 1.6                                |        | 1.9                     |     | 1.6                                |     | 1.9                     |     | ns   |
|                                     |               | A or B after LEAB↑ or D         | Data high | 0.8                                | 5, , 0 | 0                       |     | 0.8                                |     | 0                       |     |      |
| t <sub>h</sub> Hold time            |               | Data low                        | 1.2       | 90,                                | 1.3    |                         | 1.2 |                                    | 1.3 |                         | ns  |      |
|                                     |               | Data high                       | 0.8       | Q                                  | 0      |                         | 0.8 |                                    | 0   |                         | ns  |      |
|                                     |               | CEBA↑ Data low                  | Data low  | 1.3                                |        | 1.4                     |     | 1.3                                |     | 1.4                     |     | 115  |


### switching characteristics over recommended operating free-air temperature range, C<sub>L</sub> = 50 pF (unless otherwise noted) (see Figure 1)

|                  |                 |                |                                    | SN54LV       | T16543                  |     |                                    | SN7  | 4LVT16 | 543                     |     |      |
|------------------|-----------------|----------------|------------------------------------|--------------|-------------------------|-----|------------------------------------|------|--------|-------------------------|-----|------|
| PARAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CC</sub> = 3.3 V<br>± 0.3 V |              | V <sub>CC</sub> = 2.7 V |     | V <sub>CC</sub> = 3.3 V<br>± 0.3 V |      |        | V <sub>CC</sub> = 2.7 V |     | UNIT |
|                  |                 |                | MIN                                | MAX          | MIN                     | MAX | MIN                                | TYPT | MAX    | MIN                     | MAX |      |
| <sup>t</sup> PLH | A or B          | B or A         | 1.4                                | 5            |                         | 5.8 | 1.4                                | 2.7  | 4.6    |                         | 5.5 | ns   |
| <sup>t</sup> PHL | AUB             | BUIA           | 1.3                                | 4.7          |                         | 5.9 | 1.3                                | 2.9  | 4.6    |                         | 5.8 | 115  |
| <sup>t</sup> PLH | LE              | A or B         | 1.3                                | 6.8          | Mi                      | 8.5 | 1.7                                | 3.7  | 6.3    |                         | 8.1 | ns   |
| <sup>t</sup> PHL | LE              | AUB            | 1.5                                | 6.5          | M                       | 8.3 | 1.9                                | 3.7  | 6      |                         | 7.8 | 115  |
| <sup>t</sup> PZH | ŌĒ              | A or B         | 1.4                                | 6            | 140                     | 7.7 | 1.5                                | 3.3  | 5.8    |                         | 7.6 | ns   |
| <sup>t</sup> PZL |                 | AUB            | 1.6                                | 6.3          |                         | 8.4 | 1.6                                | 3.3  | 6.2    |                         | 8.2 | 115  |
| <sup>t</sup> PHZ | OE              | A or B         | 2                                  | 6.7          |                         | 7.3 | 2                                  | 4.1  | 6.5    |                         | 7.1 | ns   |
| <sup>t</sup> PLZ | UE              | AUB            | 2.7                                | <b>6</b>     |                         | 6.2 | 2.7                                | 3.9  | 5.8    |                         | 5.9 | 115  |
| <sup>t</sup> PZH | CE              | A or B         | 1.4                                | <b>4</b> 6.2 |                         | 7.7 | 1.5                                | 3.3  | 6      |                         | 7.6 |      |
| <sup>t</sup> PZL |                 | CE             |                                    | 1.6          | 6.6                     |     | 8.5                                | 1.7  | 3.3    | 6.4                     |     | 8.3  |
| <sup>t</sup> PHZ | CE              | A or B         | 2                                  | 6.6          |                         | 7.2 | 2                                  | 4.1  | 6.4    |                         | 7.1 | ns   |
| <sup>t</sup> PLZ |                 | AUB            | 2.6                                | 5.6          |                         | 5.9 | 2.6                                | 4    | 5.4    |                         | 5.6 | 115  |

<sup>†</sup> All typical values are at V<sub>CC</sub> = 3.3 V, T<sub>A</sub> =  $25^{\circ}$ C.



SCBS148C - MAY 1992 - REVISED JULY 1995



### PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz, Z<sub>O</sub> = 50  $\Omega$ , t<sub>f</sub>  $\leq$  2.5 ns, t<sub>f</sub>  $\leq$  2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

#### Figure 1. Load Circuit and Voltage Waveforms



#### **IMPORTANT NOTICE**

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated