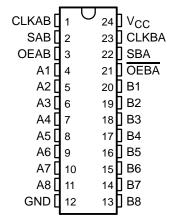
SN74BCT651 OCTAL BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS


SCBS054A - AUGUST 1990 - REVISED NOVEMBER 1993

- State-of-the-Art BiCMOS Design Significantly Reduces I_{CCZ}
- Independent Registers for A and B Buses
- Multiplexed Real-Time and Stored Data
- Inverting Data Paths
- Power-Up High-Impedance Mode
- Package Options Include Plastic Small-Outline (DW) Packages and Standard Plastic 300-mil DIPs (NT)

description

This SN74BCT651 consists of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal

DW OR NT PACKAGE (TOP VIEW)

storage registers. Output-enable (OEAB and \overline{OEBA}) inputs are provided to control the transceiver functions. The select-control (SAB and SBA) inputs are provided to select whether real-time or stored data is transferred. A low input level selects real-time data, and a high input level selects stored data. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the SN74BCT651.

Data on the A or B bus, or both, can be stored in the internal D flip-flops by low-to-high transitions at the appropriate clock (CLKAB or CLKBA) inputs regardless of the select- or enable-control pins. When SAB and SBA are in the real-time transfer mode, it is also possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and OEBA. In this configuration, each output reinforces its input. Thus, when all the other data sources to the two sets of bus lines are at high impedance, each set will remain at its last state.

The SN74BCT651 is characterized for operation from 0°C to 70°C.

FUNCTION TABLE

INPUTS				·	DAT	A I/O	OPERATION OR FUNCTION		
OEAB	OEBA	CLKAB	CLKBA	SAB	SBA	A1 THRU A8	B1 THRU B8	OPERATION OR FUNCTION	
L	Н	H or L	H or L	Х	Х	Input	Input	Isolation	
L	Н	\uparrow	\uparrow	X	Х	Input	Input	Store A and B data	
Х	Н	\uparrow	H or L	X	Х	Input	Unspecified [†]	Store A, hold B	
Н	Н	\uparrow	\uparrow	χ‡	Х	Input	Output	Store A in both registers	
L	X	H or L	\uparrow	X	Х	Unspecified [†]	Input	Hold A, store B	
L	L	\uparrow	\uparrow	X	χ‡	Output	Input	Store B in both registers	
L	L	Χ	Χ	X	L	Output	Input	Real-time B data to A bus	
L	L	Χ	H or L	X	Н	Output	Input	Stored \overline{B} data to A bus	
Н	Н	Χ	Χ	L	Х	Input	Output	Real-time \overline{A} data to B bus	
Н	Н	H or L	Χ	Н	Х	Input	Output	Stored A data to B bus	
Н	L	H or L	H or L	Н	Н	Output	Output	Stored A data to B bus and stored B data to A bus	

[†] The data output functions may be enabled or disabled by various signals at the OEAB or OEBA inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.

[‡] When select control is low, clocks can occur simultaneously so long as allowances are made for propagation delays from A to B (B to A) plus setup and hold times. When select control is high, clocks must be staggered in order to load both registers.

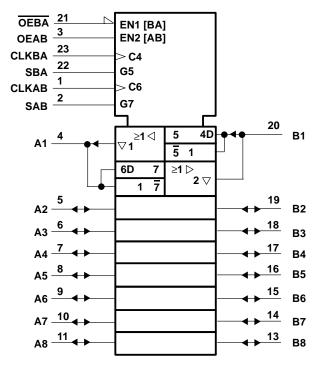
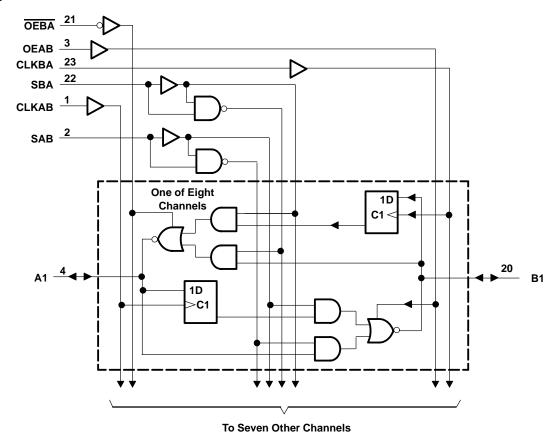

SCBS054A - AUGUST 1990 - REVISED NOVEMBER 1993

Figure 1. Bus-Management Functions


logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SCBS054A - AUGUST 1990 - REVISED NOVEMBER 1993

logic diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	– 0.5 V to 7 V
Input voltage range: Control inputs (see Note 1)	– 0.5 V to 7 V
I/O ports (see Note 1)	-0.5 V to 5.5 V
Voltage range applied to any output in the disabled or power-off state, V _O	-0.5 V to 5.5 V
Voltage range applied to any output in the high state, V _O	-0.5 V to V_{CC}
Current into any output in the low state	128 mA
Operating free-air temperature range	
Storage temperature range	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

SCBS054A - AUGUST 1990 - REVISED NOVEMBER 1993

recommended operating conditions

		MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	V
VIH	High-level input voltage	2			V
V _{IL}	Low-level input voltage			0.8	V
ΙK	Input clamp current			-18	mA
lOH	High-level output current			-15	mA
lOL	Low-level output current			64	mA
TA	Operating free-air temperature	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	Т	EST CONDITIONS	MIN	TYP	MAX	UNIT
۷ıK		V _{CC} = 4.5 V,	I _I = -18 mA			-1.2	V
VOH		V== 45V	$I_{OH} = -3 \text{ mA}$	2.4	3.3		
		V _{CC} = 4.5 V	I _{OH} = -15 mA	2	3.1		V
		V _{CC} = 4.75 V,	I _{OH} = -3 mA	2.7			
VOL		V _{CC} = 4.5 V,	I _{OL} = 64 mA		0.42	0.55	V
1.	A or B port	V FFV	\/ E5\/			1	A
11	Control inputs	V _{CC} = 5.5 V,	٧١ = <i>٩</i> :۶ ۸			1	mA
. +	A or B port	V F-V	V- 27V-			70	
l _{IH} ‡	Control inputs	V _{CC} = 5.5 V,	V _I = 27.Y' v			20	μΑ
. +	A or B port	V	Vi. 05V.			-0.7	A
I _{IL} ‡	Control inputs	V _{CC} = 5.5 V,	٧١ =Æ٦ ٨			-0.7	mA
los§		V _{CC} = 5.5 V,	V _O = 0	-100		-225	mA
ICCL	A or B port	V _{CC} = 5.5 V,	V _I = GND		39	62	mA
ICCH	A or B port	$V_{CC} = 5.5 \text{ V},$	V _I = 4.5 V		8	13	mA
ICCZ	A or B port	$V_{CC} = 5.5 V$,	V _I = GND		10	16	mA
Ci	Control inputs	V _{CC} = 5 V,	V _I = 2.5 V or 0.5 V		5.5		pF
Cio	A or B port	V _{CC} = 5 V,	V _O = 2.5 V or 0.5 V		11		pF

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

				V _{CC} = 5 V, T _A = 25°C		MAX	UNIT
			MIN MAX				
fclock	Clock frequency		0	85	0	85	MHz
	Pulse duration CLK high		4.8		4.8		
t _W	Pulse duration	7		7		ns	
t _{su}	Setup time, A or B before CLK↑	-	6		6		ns
th	Hold time, A or B after CLK↑		1		1		ns

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. ‡ For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.

[§] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

SN74BCT651 OCTAL BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS

SCBS054A - AUGUST 1990 - REVISED NOVEMBER 1993

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, T _A = 25°C			MIN	MAX	UNIT
			MIN	TYP	MAX			
fmax			85			85		MHz
^t PLH	CLKBA or CLKAB	A or B	3.2	7	10	3.2	11.7	
t _{PHL}	CLNDA OI CLNAD	AUB	3.9	7.3	10.2	3.9	11.8	ns
^t PLH	A or B	B or A	3.2	7.3	10.4	3.2	12.6	ns
t _{PHL}		BULA	2.7	5.9	8.5	2.7	9.8	110
^t PLH	SAB or SBA [†] (with A or B high)	A or B	2.8	6	8.6	2.8	9.8	ns
t _{PHL}		AUIB	4.8	9.4	12.8	4.8	15.5	10
^t PLH	SBA or SAB†	A or B	3.9	8.6	12.1	3.9	14.6	ns
t _{PHL}	(with A or B low)	AUB	4.4	8.1	11.1	4.4	12.8	110
^t PZH	OFDA an OFAD	A or B	3.3	7.1	9.8	3.3	12	ns
^t PZL	OEBA or OEAB	AUIB	3.8	7.8	10.8	3.8	13.1	115
^t PHZ	OFDA ** OFAD	A or B	3.6	6.6	9	3.6	10.2	ns
t _{PLZ}	OEBA or OEAB	AOIB	2.8	5.8	8.4	2.8	9.6	115
^t PZH	DIR	A or B	2.2	5.1	7.3	2.2	8.3	no
t _{PZL}		AUID	2.8	5.9	8.5	2.8	9.7	ns
t _{PHZ}	DIR	A or B	4.2	8	12.8	4.2	15	no
t _{PLZ}	DIK	AUIB	3.8	7.4	10.2	3.8	12.3	ns

[†] These parameters are measured with the internal output state of the storage register opposite to that of the bus input. NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated