SCAS584A - NOVEMBER 1996 - REVISED JANUARY 1997 13 GND - EPIC™ (Enhanced-Performance Implanted CMOS) Submicron Process - Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C - Typical V_{OHV} (Output V_{OH} Undershoot) 2 V at V_{CC} = 3.3 V, T_A = 25°C - Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages This 8-bit (octal) noninverting bus transceiver contains two separate supply rails. The A port has V_{CCA} , which is set at 5 V, and the B port is designed to track V_{CCB} , which accepts voltages from 3 V to 5 V. This allows for translation from a 3.3-V to a 5-V environment and vice versa. #### V_{CCA} 24 V_{CCB} DIR 2 23 NC 22 TOE A1 🛮 3 21 **∏** B1 A2 [] 20 B2 A3 🛛 A4 [19**∏** B3 Α5 18**∏** B4 17 B5 A6 🛮 8 А7 П 16**∏** B6 15**∏** B7 A8 Π 10 GND [] 11 14 🛮 B8 GND [DB, DW, OR PW PACKAGE (TOP VIEW) The SN74LVCC4245 is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so the buses are effectively isolated. The SN74LVCC4245 is characterized for operation from -40°C to 85°C. #### **FUNCTION TABLE** | INP | UTS | OPERATION | | | | | | |-----|-----|-----------------|--|--|--|--|--| | OE | DIR | OPERATION | | | | | | | L | L | B data to A bus | | | | | | | L | Н | A data to B bus | | | | | | | Н | Χ | Isolation | | | | | | Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. EPIC is a trademark of Texas Instruments Incorporated SCAS584A – NOVEMBER 1996 – REVISED JANUARY 1997 #### logic diagram (positive logic) To Seven Other Channels #### absolute maximum ratings over operating free-air temperature range (unless otherwise noted) | Supply voltage range, V _{CCA} and V _{CCB} | –0.5 V to 6 V | |---|---------------------------------| | Input voltage range, V _I (see Note 1): I/O ports | 0.5 to V _{CC} + 0.5 V | | Except I/O ports | 0.5 to V _{CCA} + 0.5 V | | Output voltage range, VO (see Note 1) | -0.5 to $V_{CC} + 0.5$ V | | Input clamp current, $I_{ K }$ ($V_{ }$ < 0 or $V_{ }$ > V_{CC}) | | | Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC}) | ±50 mA | | Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$ | ±50 mA | | Continuous current through V _{CCA} , V _{CCB} , or GND | ±100 mA | | Package thermal impedance, θ_{JA} (see Note 2): DB package | 104°C/W | | DW package | 81°C/W | | PW package | 120°C/W | | Storage temperature range, T _{stq} | –65°C to 150°C | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - NOTES: 1. This value is limited to 6 V maximum. - 2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51. ## **SN74LVCC4245** OCTAL BUS TRANSCEIVER WITH ADJUSTABLE OUTPUT VOLTAGE AND 3-STATE OUTPUTS SCAS584A – NOVEMBER 1996 – REVISED JANUARY 1997 #### recommended operating conditions (see Note 2) | | | | | VCCA | VCCB | MIN | NOM | MAX | UNIT | | |-----------------|------------------------------------|-------------------|---|-------|-------|------|-----|------|------|--| | VCCA | Supply voltage | | | | | 4.5 | 5 | 5.5 | V | | | VCCB | Supply voltage | | | | | 2.7 | 3.3 | 5.5 | V | | | VIHA | High-level input voltage | | | 4.5 V | 2.7 V | 2 | | | V | | | | | $V_O \le 0.1 V$, | $V_O \le 0.1 \text{ V}, \qquad V_O \ge V_{CCA} - 0.1 \text{ V}$ | | 3.6 V | 2 | | | | | | | | | | 5.5 V | 5.5 V | 2 | | | | | | | High-level input voltage | | | 4.5 V | 2.7 V | 2 | | | | | | VIHB | | $V_O \le 0.1 V$, | $V_{O} \le 0.1 \text{ V}, \qquad V_{O} \ge V_{CCB} - 0.1 \text{ V}$ | | 3.6 V | 2 | | | V | | | | | | | 5.5 V | 5.5 V | 3.85 | | | | | | | Low-level input voltage | | | 4.5 V | 2.7 V | | | 0.8 | V | | | V_{ILA} | | $V_O \le 0.1 V$, | $V_O \ge V_{CCA} - 0.1 \text{ V}$ | 4.5 V | 3.6 V | | | 0.8 | | | | | | | | 5.5 V | 5.5 V | | | 0.8 | | | | | Low-level input voltage | | $V_{O} \le 0.1 \text{ V}, V_{O} \ge V_{CCB} - 0.1 \text{ V}$ | 4.5 V | 2.7 V | | | 0.8 | V | | | V_{ILB} | | $V_O \le 0.1 V$, | | 4.5 V | 3.6 V | | | 0.8 | | | | | | | | 5.5 V | 5.5 V | | | 1.65 | | | | V_{IA} | Input voltage | | | | | 0 | | VCCA | V | | | V _{IB} | Input voltage | | | | | 0 | | VCCB | V | | | VOA | Output voltage | | | | | 0 | | VCCA | V | | | VOB | Output voltage | | | | | 0 | | VCCB | V | | | laur | High-level output current | | | 4.5 V | 3 V | | | -12 | mA | | | ГОНА | nigii-ievei output current | | | 5 V | 3 V | | | -24 | IIIA | | | 10::5 | High-level output current | | 5 V | 2.7 V | | | -12 | mA | | | | ІОНВ | High-level output current | | | | 3 V | | | -24 | IIIA | | | lo | Low lovel output ourrest | | 4.5 V | 3 V | | | 12 | mA | | | | IOLA | Low-level output current | | | | 3 V | | | 24 | IIIA | | | lo: n | Low-level output current | | 5 V | 2.7 V | | | 12 | mA | | | | IOLB | Low-level output culterit | | | | 3 V | | | 24 | IIIA | | | Δt/Δν | Input transition rise or fall rate | | | | | 0 | | 10 | ns/V | | | TA | Operating free-air temperature | | | | | -40 | | 85 | °C | | NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating. SCAS584A - NOVEMBER 1996 - REVISED JANUARY 1997 # electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | PAR | AMETER | TEST CONDITIONS | VCCA | VCCB | MIN | TYP | MAX | UNIT | |----------------------------------|--|---|-------|-------|------|------|------|------| | V/ | | $I_{OH} = -100 \mu\text{A}$ | | 3 V | 4.4 | 4.49 | | V | | VOHA | | $I_{OH} = -24 \text{ mA}$ | | 3 V | 3.76 | 4.25 | | V | | | | I _{OH} = -100 μA | | 3 V | 2.25 | 2.65 | | | | | | 1 40 mA | 451/ | 2.7 V | 2.2 | 2.5 | | | | V | | IOH = -12 mA | 4.5 V | 3 V | 2.46 | 2.85 | | V | | VOНВ | | | | 2.7 V | 2 | 2.1 | | V | | | | $I_{OH} = -24 \text{ mA}$ | 4.5 V | 3 V | 2.25 | 2.65 | | | | VOLA | | | | 4.5 V | 3.76 | 4.25 | | | | V _{OLA} | | I _{OL} = 100 μA | | 3 V | | | 0.1 | V | | VOLA | | I _{OL} = 24 mA | 4.5 V | 3 V | | 0.21 | 0.44 | V | | | | I _{OL} = 100 μA | 4.5 V | 3 V | | | 0.1 | | | V _{OLB} | I _{OL} = 12 mA | 4.5 V | 2.7 V | | 0.11 | 0.44 | | | | | | | 4.5 V | 2.7 V | | 0.22 | 0.5 | V | | | | $I_{OL} = 24 \text{ mA}$ | | 3 V | | 0.21 | 0.44 | | | | | | | 4.5 V | | 0.18 | 0.44 | | | 1. | Control nine | V. Voc. or CND | F F V | 3.6 V | | ±0.1 | ±1 | | | łį | Control pins | V _I = V _{CCA} or GND | 5.5 V | 5.5 V | | ±0.1 | ±1 | μΑ | | loz† | A or B ports | $V_O = V_{CC}$ or GND, $V_I = V_{IL}$ or V_{IH} | 5.5 V | 3.6 V | | ±0.5 | ±5 | μΑ | | | | $A_n = V_{CC}$ or GND | 5.5 V | Open | | 8 | 80 | | | I _{CCA} B to A | B to A | $A_n = V_{CCA}$ or GND, $B_n = V_{CCB}$ or GND | F F V | 3.6 V | | 8 | 80 | μΑ | | | | | 5.5 V | 5.5 V | | 8 | 80 | | | ICCB A to B | | A V STONE B V STONE | 5.5.7 | 3.6 V | | 5 | 50 | ^ | | ICCB | A to B | $A_n = V_{CCA}$ or GND, $B_n = V_{CCB}$ or GND | 5.5 V | 5.5 V | | 8 | 80 | μΑ | | A port ΔICCA [‡] ΘΕ DIR | A port | $V_L = V_{CCA} - 2.1 \text{ V}$, Other inputs at V_{CCA} or GND, OE at GND and DIR at V_{CCA} | 5.5 V | 5.5 V | | 1.35 | 1.5 | | | | \overline{OE} $V_I = V_{CCA} - 2.1 \text{ V, Other inputs at } V_{CCA} \text{ or GND}$ DIR at V_{CCA} or GND | | 5.5 V | 5.5 V | | 1 | 1.5 | mA | | | DIR | V _L = V _{CCA} - 2.1 V, Other inputs at V _{CCA} or GND, OE at V _{CCA} or GND | | 3.6 V | | 1 | 1.5 | | | ∆I _{CCB} ‡ | B port | $V_L = V_{CCB} - 0.6 \text{ V}$, Other inputs at V_{CCB} or GND, \overline{OE} at GND and DIR at V_{CCB} | 5.5 V | 3.6 V | | 0.35 | 0.5 | mA | | Ci | Control inputs | V _I = V _{CCA} or GND | | Open | | 4.5 | | pF | | C _{io} | A or B ports | V _O = V _{CCA} or GND | 5 V | 3.3 V | | 10 | | pF | [†] For I/O ports, the parameter I_{OZ} includes the input leakage current. [‡] This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V_{CCB}. SCAS584A - NOVEMBER 1996 - REVISED JANUARY 1997 #### switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 1) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | $V_{CCA} = 5 V \pm 0.5 V, V_{CCB} = 5 V \pm 0.5 V$ | | | $V_{CCA} = 5 \text{ V} \pm 0.5 \text{ V}, \\ V_{CCB} = 2.7 \text{ V TO } 3.6 \text{ V}$ | | | UNIT | |----------------------|-----------------|----------------|--|------------------|-----|---|------------------|-----|------| | | (INPUT) | | MIN | TYP [†] | MAX | MIN | TYP [‡] | MAX | | | t _{PHL} | А | В | 1 | 4.9 | 7 | 1 | 5.5 | 8 | ne | | ^t PLH | ^ | | 1 | 4 | 6 | 1 | 5 | 7.5 | ns | | ^t PHL | В | А | 1 | 4.7 | 7 | 1 | 5.6 | 8 | ns | | ^t PLH | | Α | 1 | 3.9 | 5.5 | 1 | 4.3 | 6.5 | 115 | | ^t PZL | ŌĒ | Ē A | 1 | 7.4 | 10 | 1 | 8 | 11 | ns | | ^t PZH | | Κ | 1 | 6.1 | 8.5 | 1 | 6.3 | 8 | 115 | | ^t PZL | ŌĒ | В | 1 | 5.6 | 8 | 1 | 6.7 | 10 | ns | | ^t PZH | OE . | Б | 1 | 5.7 | 8 | 1 | 6.9 | 10 | 115 | | t _{PLZ} | ŌĒ | A | 1 | 2.9 | 5 | 1 | 2.9 | 5.5 | ns | | ^t PHZ | | Κ | 1 | 3.4 | 6 | 1 | 3.4 | 6 | 115 | | t _{PLZ} | ŌĒ | В | 1 | 3.8 | 6 | 1 | 4.2 | 7 | no | | ^t PHZ | | D | 1 | 4.8 | 7.5 | 1 | 6 | 9.5 | ns | | t _{sk(o)} § | Data or output | Output | | 1 | 1.5 | | 1 | 1.5 | ns | [†] Typical values are at T_A = 25°C, V_{CCA} = 5 V, and V_{CCB} = 5 V. ‡ Typical values are at T_A = 25°C, V_{CCA} = 5 V, and V_{CCB} = 3.3 V. § Skew is the difference in the propagation delay of any two outputs of the same device. This parameter is ensured by design. #### PARAMETER MEASUREMENT INFORMATION FOR B PORT (SEE NOTE E) NOTES: A. C_L includes probe and jig capacitance. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. LOW- AND HIGH-LEVEL ENABLING - All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2.5 ns. $t_f \leq$ 2.5 ns. - D. The outputs are measured one at a time with one transition per measurement. - E. This is to test the B port, with $V_{CCA} = 5.5 \text{ V}$ and $V_{CCB} = 5.5 \text{ V}$. Figure 1. Load Circuit and Voltage Waveforms PRODUCT PREVIEW SCAS584A - NOVEMBER 1996 - REVISED JANUARY 1997 #### PARAMETER MEASUREMENT INFORMATION FOR A AND B PORT (SEE NOTE E) NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2.5$ ns, $t_f \leq 2.5$ ns. - D. The outputs are measured one at a time with one transition per measurement. - E. This is to test the A and B ports, with $V_{CCA} = 5.5 \text{ V}$ and $V_{CCB} = 3.6 \text{ V}$. Figure 2. Load Circuit and Voltage Waveforms #### **IMPORTANT NOTICE** Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current. TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Copyright © 1996, Texas Instruments Incorporated