
DL PACKAGE (TOP VIEW) SCAS573 - JUNE 1996

- Four 2.5-V CPU Clock Outputs With Programmable Frequency (60 MHz and 66 MHz)
- 2.5-V IOAPIC Clock Output
- Eight 3.3-V PCI Clock Outputs
- Two 3.3-V 48-MHz Serial Bus Clocks
- 3.3-V 24-MHz Floppy Controller Clock
- Three 3.3-V 14.318-MHz Reference Clocks
- All Output Clock Frequencies Derived From a Single 14.31818-MHz Crystal Input
- Internal Loop Filters for Phase-Lock Loops (PLLs)
- Power-Down and Test-Mode Support
- Packaged in Plastic 300-mil Shrink Small-Outline Package

description

The CDC9162 is an integrated clock synthesizer and driver specifically designed for use with microprocessors manufactured by Intel. The CDC9162 generates the necessary clock signals for a high-performance PC motherboard and provides both 2.5-V and 3.3-V signaling to support both processor/chipset clocks and PCI clocks.

REF1 48**[**] V_{CC} REF0 2 47 REF2 GND 3 46 VCCO2 XIN 45 IOAPIC XOUT [] 5 44 I GND PCLK_EN 6 43 GND 42 HCLK0 V_{CCO3} [] 7 PCLK0 8 41 THCLK1 PCLK1 9 40 V_{CCO2} GND 110 39 HCLK2 PCLK2 11 38 HCLK3 PCLK3 1 12 37 ∏ GND PCLK4 1 13 36 (reserved) PCLK5 114 35 (reserved) 34 VCC V_{CCO3} **∐** 15 PCLK6 1 16 33 FCCLK PCLK7 17 32 | GND GND 118 31 (reserved) 30 GND (reserved) ☐ 19 (reserved) 120 29 ∏HCLK EN 28 PWR DN V_{CC} **∐** 21 SBCLK0 22 27 ¶ SEL0 SBCLK1 [26 SEL1 GND 1 24 25 VCC

The four host clock (HCLKn) outputs are programmable to 60 MHz or 66 MHz via the SEL control inputs. The eight PCI clock (PCLKn) outputs are one-half the HCLK frequency, and are offset 1 ns to 4 ns from the rising edge of the host clock. In addition, the CDC9162 generates two copies of a 48-MHz bus clock (SBCLK), a 24-MHz floppy controller clock (FCCLK), three copies of the 14.318-MHz reference clock (REFn), and a 2.5-V IOAPIC clock at 14.318 MHz. All output frequencies are generated from a 14.31818-MHz crystal input.

A test clock can be driven over the XIN input in the test mode. The oscillator and PLLs are bypassed when operating in the test mode.

PLLs are used to generate the host clock and serial bus clock frequencies. On-chip loop filters and internal feedback eliminate the need for external components. The PCI clock frequency is derived from the base host clock frequency; FCCLK is derived from the serial bus clock frequency.

The host and PCI clock outputs provide low-skew/low-jitter clock signals for reliable clock operation. All outputs are 3 state and are disabled via the SEL inputs.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCAS573 - JUNE 1996

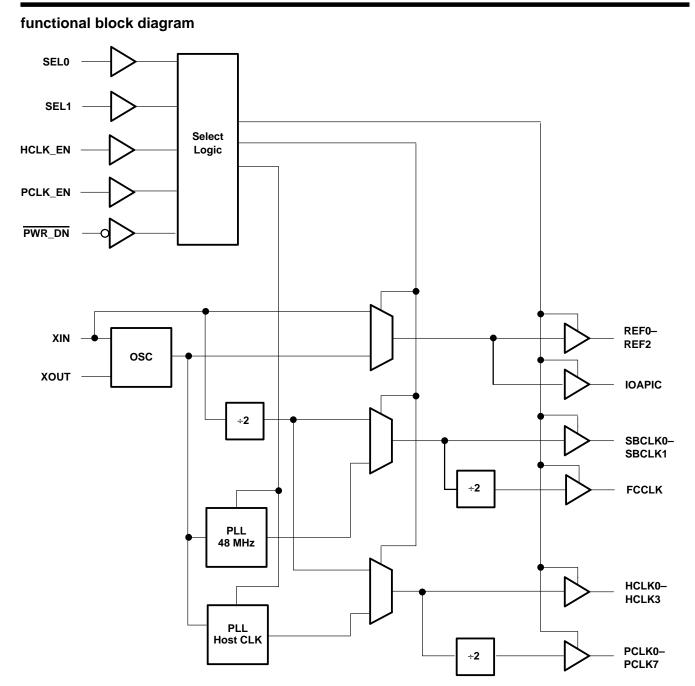
description (continued)

Low-power operation also is provided by the HCLK_EN, PCLK_EN, and PWR_DN inputs. HCLK_EN, when low, places all host clocks in the logic low state; all other outputs operate normally. PCLK_EN, when low, places all PCI clocks in the logic low state; all other outputs operate normally. PWR_DN, when low, suspends all clock outputs and the internal oscillator and PLLs are disabled to a low-power mode.

Because the CDC9162 is based on PLL circuitry, it requires a stabilization time to achieve phase-lock of the PLL. This stabilization time is required following power up and application of a fixed-frequency, fixed-phase signal at the XIN input, as well as following any changes to the SEL inputs or after the return to normal operation following a low-to-high transition of PWR DN.

FREQUENCY SELECT

SEL1	SEL0	XIN	HCLKN	PCLKN	REFN	IOAPIC	SBCLK	FCCLK
L	L	14.31818 MHz†	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z
L	Н	14.31818 MHz	60 MHz	30 MHz	14.318 MHz	14.318 MHz	48 MHz	24 MHz
Н	L	14.31818 MHz	66 MHz	33 MHz	14.318 MHz	14.318 MHz	48 MHz	24 MHz
Н	Н	TCLK‡	TCLK/2	TCLK/4	TCLK	TCLK	TCLK/2	TCLK/4


[†] The allowable reference frequency is minimum = 14.316 MHz, nominal = 14.31818 MHz, and maximum = 14.32 MHz.

CLOCK ENABLE

PWR_DN	HCLK_EN	PCLK_EN	HCLKN	PCLKN	ALL OTHER CLOCKS	vcos
L	X	X	L	L	L	Static
Н	L	L	L	L	Active	Active
Н	L	Н	L	Active	Active	Active
Н	Н	L	Active	L	Active	Active
н	Н	Н	Active	Active	Active	Active

[‡]TCLK is a test clock at the XIN input during test mode.

SCAS573 - JUNE 1996

Terminal Functions

TER	MINAL	.,,	DECORPORATION		
NAME	NO.	1/0	DESCRIPTION		
FCCLK	33	0	3.3-V floppy controller clock output at 24 MHz		
GND	3, 10, 18, 24, 30, 32, 37, 43, 44	GND	Ground		
HCLK_EN	29	Į	Host (CPU) clock enable		
HCLK0-HCLK3	38, 39, 41, 42	0	2.5-V host (CPU) clock outputs programmable to 60 MHz or 66 MHz		
IOAPIC	45	0	2.5-V IOAPIC clock output at 14.318 MHz		
PCLK_EN	6	I	PCI clock enable		
PCLK0-PCLK7	8, 9, 11, 12, 13, 14, 16, 17	0	3.3-V PCI clock outputs at one-half HCLK frequency		
PWR_DN	28	I	Power-down enable		
Reserved	19, 20, 31, 35, 36		Reserved for future use		
REF0-REF2	1, 2, 47	0	3.3-V ISA reference clock output at 14.318 MHz		
SEL0-SEL1	26, 27	I	Clock frequency select inputs		
SBCLK	22, 23	0	3.3-V universal serial bus clock output at 48 MHz		
Vcc	21, 25, 34, 48	Power	3.3-V core power supply		
VCCO3	7, 15	Power	3.3-V output power supply		
V _{CCO2}	40, 46	Power	2.5-V output power supply		
XIN	4	ı	Crystal input		
XOUT	5	0	Crystal output		

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 4.6 V
V _{CCO3}	0.5 V to 4.6 V
V _{CCO2}	0.5 V to 3.6 V
Input voltage range, V _I (see Note 1)	0.5 V to 4.6 V
Voltage range applied to any output in the high state or power-off state, VO	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Current into any output in the low state, IO	24 mA
Input clamp current, I_{IK} ($V_I < 0$)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 2)	1.2 W
Storage temperature range, T _{Stg}	-65° C to 150° C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - 2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the *Package Thermal Considerations* application note in the *ABT Advanced BiCMOS Technology Data Book*, literature number SCBD002.

SCAS573 - JUNE 1996

recommended operating conditions (see Note 3)

		MIN	MAX	UNIT
Vcc	3.3-V core supply voltage	3.135	3.465	V
VCCO3	3.3-V I/O supply voltage	3.135	3.465	V
VCCO2	2.5-V I/O supply voltage	2.375	2.9	V
V _{IH3}	High-level input voltage	2.0	VCCO3+0.3	V
V_{IL3}	Low-level input voltage	-0.3	0.8	V
loн	High-level output current		-12	mA
loL	Low-level output current		12	mA
TA	Operating free-air temperature	0	70	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	MAX	UNIT
VIK	V _{CC} = 3.135 V,	I _I = -18 mA			-1.2	V
V _{OH3}	V _{CC} = 3.135 V,	I _{OH} = -1 mA		2.4		V
V _{OL3}	V _{CC} = 3.135 V,	I _{OL} = 1 mA			0.4	V
V _{OH2}	V _{CC} = 2.375 V	I _{OH} = -1 mA		2		V
V _{OL2}	V _{CC} = 2.375 V	$I_{OL} = 1 \text{ mA}$			0.4	V
lį	$V_{CC} = 3.465 \text{ V},$	$V_I = V_{CC}$ or GND		-5	5	μΑ
loz	V _{CC} = 3.465 V,	$V_0 = 3.135 \text{ V or } 0$				μΑ
			Outputs high			
lcc	$V_{CC} = 3.465 \text{ V},$ $V_{I} = V_{CC} \text{ or GND}$	$I_{O} = 0$,	Outputs low			mA
	AL = ACC OLGIND		Outputs disabled			
C _i					5	pF
Co					6	pF
L _{pin}					7	nΗ
C _{pd}	V _I = 3.135 V or 0					pF

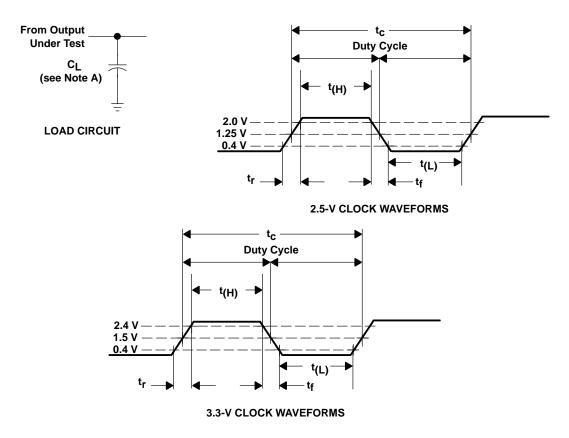
timing requirements over recommended ranges of supply voltage and operating free-air temperature (see Figure 4)

		MIN	MAX	UNIT
	After change to SEL0 or SEL1		3	
Stabilization time†	After PWR_DWN ↑	3		ms
	After power up		3	

[†] Time required for the integrated PLL circuit to obtain phase lock of its feedback signal to its reference signal. For phase lock to be obtained, a fixed-frequency, fixed-phase reference signal must be present at XIN.

SCAS573 - JUNE 1996

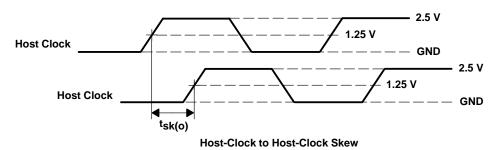
switching characteristics (see Figures 1, 2, and 3)


DADAMETED	FROM	FROM TO	60 N	ИHz	66 MHz		UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	UNII
t _c †		HCLKn	16.7		15		ns
t _{p(H)} †		HCLKn	6.0		5.2		ns
t _{p(L)} †		HCLKn	5.8		5.0		ns
t _r †‡		HCLKn	0.4	1.6	0.4	1.6	ns
t _f †‡		HCLKn	0.4	1.6	0.4	1.6	ps
Jitter [†]		HCLKn		±250		±250	ps
Duty cycle [†]		HCLKn	45%	55%	45%	55%	
t _{skew} †		HCLKn		250		250	ps
t _C †		PCKLn	33.3		30		ps
t _{p(H)} †		PCKLn	13.3		12		ns
t _{p(L)} †		PCKLn	13.3		12		ps
t _r †‡		PCKLn	0.5	2.0	0.5	2.0	ns
t _f †‡		PCKLn	0.5	2.0	0.5	2.0	ns
Jitter [†]		PCKLn		±350		±350	ps
Duty cycle†		PCKLn	45%	55%	45%	55%	
t _{skew} †		PCKLn		500		500	ps
^t hpoffset [†]	HCLKn	PCLKn	1	4	1	4	ns
Clock enable latency	PCLK_EN	PCLKn↑	1	4	1	4	HCLK
Olock eliable latericy	HCLK_EN	HCLKn↑	1	4	1	4	cycles

[†] Specifications are applicable only after the PLL stabilization time has elapsed.

[‡] Rise and fall times are characterized using the load circuits shown in Figure 1.

PARAMETER MEASUREMENT INFORMATION

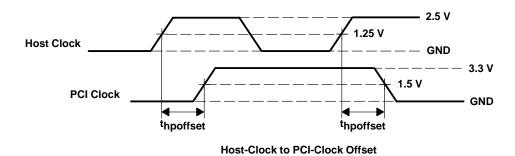
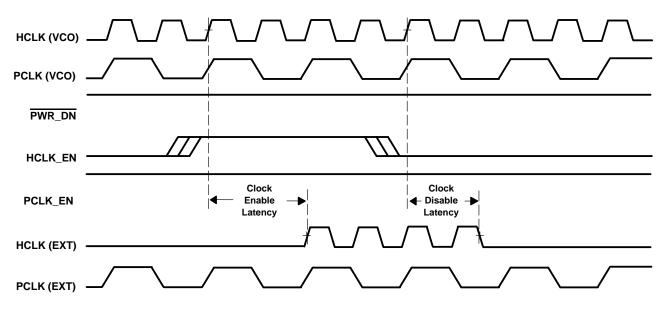


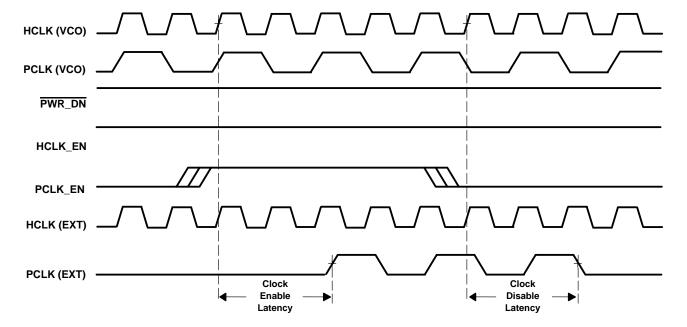
NOTES: A. C_L includes probe and jig capacitance.

- C_L = 30pF for PCLK0-PCLK7
- C_L = 45pF for REF0
- $C_L = 20pF$ for all other outputs
- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- C. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION


Figure 2. Waveforms for Calculation of $t_{sk(o)}$ and $t_{hpoffset}$

PARAMETER MEASUREMENT INFORMATION

HCLK Enable Timing Diagram

HCLK Enable Timing Diagram

Figure 3. Timing Example

SCAS573 - JUNE 1996

PARAMETER MEASUREMENT INFORMATION

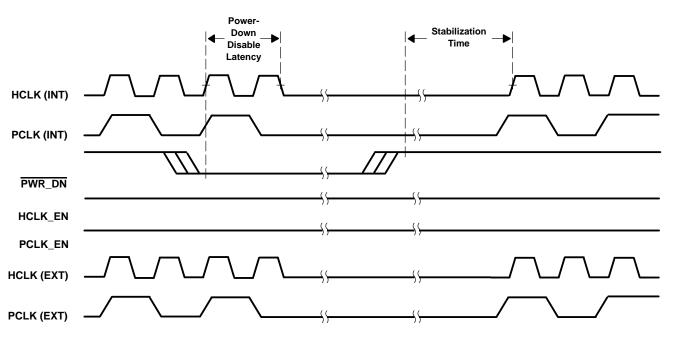


Figure 4. Power-Down Timing

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated