SCAS570B - MARCH 1996 - REVISED NOVEMBER 1996

 Member of the Texas Instruments Widebus™ Family 	DGG OR DL PACKAGE (TOP VIEW)			
 EPIC ™ (Enhanced-Performance Implanted CMOS) Submicron Process 	OEA	56 OE2B		
 B-Port Outputs Have Equivalent 26-Ω Series Resistors, So No External Resistors Are Required 	2B3 🛛 3 GND 🖸 4	54 2B4 53 GND		
 ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model 	2B2 5 2B1 6 V _{CC} 7	52 285 51 286 50 V _{CC}		
 (C = 200 pF, R = 0) Latch-Up Performance Exceeds 250 mA 	A1 [] 8 A2 [] 9	49 2B7 48 2B8		
Per JEDEC Standard JESD-17	A3 [10 GND [11	47 2B9 46 GND		
 Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors 	A4 [12 A5 [13 A6 [14	45 2B10 44 2B11 43 2B12		
 Package Options Include Thin-Shrink Small-Outline (DGG) and Plastic Shrink 	A7 [15 A8 [16 A9 [17	42 1B12 41 1B11 40 1B10		
Small-Outline (DL) Packages description	GND [] 18 A10 [] 19	39 GND 38 1B9		
This 12-bit to 24-bit multiplexed D-type latch is designed for 2.3-V to 3.6-V _{CC} operation.	A11 20 A12 21 V _{CC} 22	37 1B8 36 1B7 35 V _{CC}		
The SN74ALVCH162260 is used in applications where two separate datapaths must be	1B1 [23 1B2 [24	34] 1B6 33] 1B5		
multiplexed onto, or demultiplexed from, a single datapath. Typical applications include multiplexing and/or demultiplexing address and	GND 25 1B3 26 LE2B 27	32 GND 31 1B4 30 LEA1B		
data information in microprocessor or	SEL 🛛 28	29 0E1B		

Three 12-bit I/O ports (A1–A12, 1B1–1B12, and 2B1–2B12) are available for address and/or data transfer. The output-enable ($\overline{OE1B}$, $\overline{OE2B}$, and \overline{OEA}) inputs control the bus transceiver functions. The $\overline{OE1B}$ and $\overline{OE2B}$ control signals also allow bank control in the A-to-B direction.

Address and/or data information can be stored using the internal storage latches. The latch-enable (LE1B, LE2B, LEA1B, and LEA2B) inputs are used to control data storage. When the latch-enable input is high, the latch is transparent. When the latch-enable input goes low, the data present at the inputs is latched and remains latched until the latch-enable input is returned high.

The B outputs, which are designed to sink up to 12 mA, include 26- Ω resistors to reduce overshoot and undershoot.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

bus-interface applications. This device is also useful in memory-interleaving applications.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1996, Texas Instruments Incorporated

description (continued)

The SN74ALVCH162260 is available in TI's shrink small-outline (DL) and thin-shrink small-outline (DGG) packages, which provide twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN74ALVCH162260 is characterized for operation from -40°C to 85°C.

	B TO A (OEB = H)									
	INPUTS									
1B	2B	SEL	LE1B	LE2B	OEA	Α				
Н	Х	Н	Н	Х	L	Н				
L	Х	Н	н	Х	L	L				
Х	Х	Н	L	Х	L	A ₀				
Х	Н	L	х	н	L	Н				
Х	L	L	Х	н	L	L				
Х	Х	L	Х	L	L	A ₀				
Х	Х	Х	Х	Х	Н	Z				

Function Tables

A 10 B (OEA = H)										
		Ουτι	PUTS							
Α	LEA1B	LEA2B	OE1B	OE2B	1B	2B				
н	Н	Н	L	L	Н	Н				
L	Н	Н	L	L	L	L				
н	Н	L	L	L	н	2B ₀				
L	н	L	L	L	L	2B0				
н	L	Н	L	L	1B ₀	Н				
L	L	Н	L	L	1B ₀	L				
Х	L	L	L	L	1B ₀	2B0				
Х	Х	Х	Н	н	Z	Z				
Х	Х	Х	L	н	Active	Z				
Х	Х	Х	Н	L	Z	Active				
х	Х	Х	L	L	Active	Active				

A TO B (OEA = H)

logic diagram (positive logic)

To 11 Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} Input voltage range, V_I : Except I/O ports (see Note 1) I/O ports (see Notes 1 and 2) Output voltage range, V_O (see Notes 1 and 2) Input clamp current, I_{IK} ($V_I < 0$) Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$) Continuous output current, I_O ($V_O = 0$ to V_{CC})	$\begin{array}{ccc} -0.5 \ V \ to \ 4.6 \ V \\ -0.5 \ V \ to \ V_{CC} \ + \ 0.5 \ V \\ -0.5 \ V \ to \ V_{CC} \ + \ 0.5 \ V \\ -50 \ mA \\ \pm 50 \ mA \end{array}$
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$ Continuous current through each V_{CC} or GND Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 3): DGG package	±100 mA
. DL package Storage temperature range, T _{stg}	1.4 W –65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

- 2. This value is limited to 4.6 V maximum.
- 3. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the *Package Thermal Considerations* application note in the *ABT Advanced BiCMOS Technology Data Book.*

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT		
VCC	Supply voltage		2.3	3.6	V		
Maria	V _{CC} = 2.3 V to 2.7 V		1.7		v		
۷IH	High-level input voltage	$V_{CC} = 2.7 V \text{ to } 3.6 V$	2		V		
V _{CC} VIH VIL VI VO IOH		V_{CC} = 2.3 V to 2.7 V		0.7	v		
۲L	Low-level input voltage	$V_{CC} = 2.7 V \text{ to } 3.6 V$		0.8	v		
٧I	Input voltage		0	VCC	V		
٧o	Output voltage		0	VCC	V		
		V _{CC} = 2.3 V		-12			
	High-level output current (A port)	V _{CC} = 2.7 V		-12			
		V _{CC} = 3 V		-24	mA		
ОН	V _{CC} = 2.3 VHigh-level output current (B port)V _{CC} = 2.7 V	V _{CC} = 2.3 V		-6			
			-8				
		V _{CC} = 3 V		-12			
		V _{CC} = 2.3 V		12			
	Low-level output current (A port)	V _{CC} = 2.7 V		12			
		V _{CC} = 3 V		24			
'OL		V _{CC} = 2.3 V		6	mA		
	Low-level output current (B port) $V_{CC} = 2.7 V$			8			
		V _{CC} = 3 V					
∆t/∆v	Input transition rise or fall rate	•	0	10	ns/V		
A	Operating free-air temperature		-40	85	°C		

NOTE 4: Unused control inputs must be held high or low to prevent them from floating.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST C	ONDITIONS	Vcc	MIN TYP [†]	MAX	UNIT	
	IOI	H = −100 μA		2.3 V to 3.6 V	V _{CC} -0.2			
		H = −6 mA,	V _{IH} = 1.7 V	2.3 V	2			
			V _{IH} = 1.7 V	2.3 V	1.7		N	
VOH (A port)	IOI	H = −12 mA	V _{IH} = 2 V	2.7 V	2.2		V	
			V _{IH} = 2 V	3 V	2.4			
	IOI	H = −24 mA,	V _{IH} = 2 V	3 V	2			
		H = –100 μA		2.3 V to 3.6 V	V _{CC} -0.2			
	IOI	H = −4 mA,	V _{IH} = 1.7 V	2.3 V	1.9			
V((D m ent)		6 m A	VIH = 1.7 V	2.3 V	1.7		M	
VOH (B port)	101	H = −6 mA	V _{IH} = 2 V	3 V	2.4		V	
	IOI	H = −8 mA,	V _{IH} = 2 V	2.7 V	2			
	IOI	H = −12 mA,	V _{IH} = 2 V	3 V	2			
	IOI	_ = 100 μA		2.3 V to 3.6 V		0.2		
V _{OL} (A port)	IOI	_ = 6 mA,	V _{IL} = 0.7 V	2.3 V		0.4		
		I _{OL} = 12 mA	V _{IL} = 0.7 V	2.3 V		0.7	V	
	101		V _{IL} = 0.8 V	2.7 V		0.4		
	IOI	_ = 24 mA,	V _{IL} = 0.8 V	3 V		0.55		
	IOI	_ = 100 μA	2.3 V to 3.6 V		0.2			
	IOI	_ = 4 mA,	V _{IL} = 0.7 V	2.3 V		0.4	5 V	
Va. (Daart)		I _{OL} = 6 mA	VIL = 0.7 V	2.3 V		0.55		
VOL (B port)	101		V _{IL} = 0.8 V	3 V		0.55		
	IOI	_ = 8 mA,	V _{IL} = 0.8 V	2.7 V		0.6		
	IOI	_ = 12 mA,	V _{IL} = 0.8 V	3 V		0.8		
lı	VI	= V _{CC} or GND		3.6 V		±5	μA	
	VI	= 0.7 V		2.3 V	45			
	VI	= 1.7 V		2.3 V	-45			
l(hold)	VI	= 0.8 V		2)/	75		μA	
	VI	= 2 V		3 V	-75			
		$V_{\rm I} = 0 \text{ to } 3.6 \text{ V}^{\ddagger}$		3.6 V		±500	500	
IOZ [§]) = V _{CC} or GND		3.6 V		±10	μA	
ICC	VI	= V _{CC} or GND,	IO = 0	3.6 V		40	μA	
∆ICC	On	ie input at V _{CC} – 0.6 V,	Other inputs at V_{CC} or GND	3 V to 3.6 V		750	μA	
C _i Control	inputs V _I	= V _{CC} or GND		3.3 V	3.5		pF	
C _{io} A or B p	orts Vr) = V _{CC} or GND		3.3 V	4.5		pF	

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. [‡] This is the bus-hold maximum dynamic current required to switch the input from one state to another.

§ For I/O ports, the parameter IOZ includes the input leakage current.

SCAS570B - MARCH 1996 - REVISED NOVEMBER 1996

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

		V _{CC} = ± 0.:	V _{CC} = 2.5 V ± 0.2 V V _{CC} = 2.7 V		= ۷ _{CC} ± 0.:	3.3 V 3 V	UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequency	0	150	0	150	0	150	MHz
tw	Pulse duration, LE1B, LE2B, LEA1B, or LEA2B high	3.3		3.3		3.3		ns
t _{su}	Setup time, data before LE1B, LE2B, LEA1B, or LEA2B	1.4		1.1		1.1		ns
^t h	Hold time, data after LE1B, LE2B, LEA1B, or LEA2B	1.6		1.9		1.5		ns

switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figures 1 and 2)

PARAMETER	FROM (INPUT)			V _{CC} = 2.5 V ± 0.2 V		2.7 V	V _{CC} = 3.3 V ± 0.3 V		UNIT
	(INFOT)		MIN	MAX	MIN	MAX	MIN	MAX	
^f max			150		150		150		MHz
	А	В	1.2	6.5		5.8	1.2	4.9	
	В	А	1.2	6		5.1	1.2	4.3	ns
^t pd	LE	А	1	6.2		5.2	1	4.4	
	LE	В	1	6.7		5.9	1	5	
	SEL	А	1.2	7.5		6.6	1.1	5.6	
	OE	А	1	7.2		6.4	1	5.4	
t _{en}	OE	В	1	7.7		7.1	1	6	ns
t	OE	А	1.7	5.9		5	1.3	4.6	ns
^t dis	OE	В	1.7	6.4		5.5	1.3	5.1	115

operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER		TEST CONDITIONS	V _{CC} = 2.5 V ± 0.2 V	V _{CC} = 3.3 V ± 0.3 V	UNIT	
		_		TYP	TYP		
<u> </u>	Dower dissipation consultance	Outputs enabled	C _I = 50 pF, f = 10 MHz	62	46	pF	
Cpd	Cpd Power dissipation capacitance	ower dissipation capacitance Outputs disabled		29	24	μr	

SCAS570B - MARCH 1996 - REVISED NOVEMBER 1996

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω, t_r ≤ 2.5 ns,
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tPLZ and tPHZ are the same as t_{dis}.
 - F. tpzL and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

SCAS570B - MARCH 1996 - REVISED NOVEMBER 1996

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tPLH and tPHL are the same as tpd.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated