SN74LVCH16541A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCAS567D – MARCH 1996 – REVISED JUNE 1997

 Member of the Texas Instruments Widebus™ Family 		R DL PACKAG OP VIEW)	θE
 EPIC[™] (Enhanced-Performance Implanted CMOS) Submicron Process 	1 <mark>0E1</mark> 1 1Y1 2		-
 Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C 	1Y1 [] 2 1Y2 [] 3 GND [] 4	3 46 1	A2
 Typical V_{OHV} (Output V_{OH} Undershoot) > 2 V at V_{CC} = 3.3 V, T_A = 25°C 	1Y3 5 1Y4 6	5 44 🛛 1	A3
 Power Off Disables Inputs/Outputs, Permitting Live Insertion 	V _{CC} [7 1Y5 [8	3 41 🛛 1	A5
 Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V_{CC}) 	1Y6 9 GND 10 1Y7 11	10 39 G	SND
 ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V 	1Y8 [1: 2Y1 [1:	2 37] 1. 3 36] 2.	A8 A1
 Using Machine Model (C = 200 pF, R = 0) Latch-Up Performance Exceeds 250 mA Per JESD 17 	2Y2 [14 GND [14 2Y3 [14	15 34 G	SND
 Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors 	2Y4 [1 V _{CC} [1 2Y5 [1	8 31 V 9 30 2	CC A5
 Package Options Include Thin-Shrink Small-Outline (DGG) and Plastic 300-mil 	2Y6 22 GND 2 2Y7 22	21 28 G	SND
Shrink Small-Outline (DL) Packages description	2Y8 [2 2OE1 [2	Б.	

This 16-bit buffer/driver is designed for 2.7-V to 3.6-V V_{CC} operation.

The SN74LVCH16541A is a noninverting 16-bit buffer composed of two 8-bit sections with separate output-enable signals. For either 8-bit buffer section, the two output-enable ($1\overline{OE1}$ and $1\overline{OE2}$ or $2\overline{OE1}$ and $2\overline{OE2}$) inputs must be low for the corresponding Y outputs to be active. If either output-enable input is high, the outputs of that 8-bit buffer section are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74LVCH16541A is characterized for operation from –40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

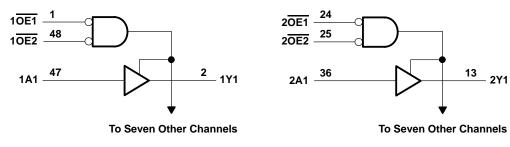
EPIC and Widebus are trademarks of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1997, Texas Instruments Incorporated

SN74LVCH16541A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCAS567D – MARCH 1996 – REVISED JUNE 1997

FUNCTION TABLE


(each 8-bit section)								
	INPUTS	OUTPUT						
OE1	OE2	Α	Y					
L	L	L	L					
L	L	Н	н					
Н	Х	Х	Z					
Х	Н	Х	Z					

logic symbol[†]

	1	&		1	
10E1	48	a	EN1		
10E2	24				
20E1	25	&	EN2		
20E2					
	47	ے۔ ۱		2	4344
1A1 1A2	46	1	l 1 ⊽	3	1Y1 1Y2
1A2	44			5	1Y3
1A4	43			6	1Y4
1A5	41			8	1Y5
1A6	40			9	1Y6
1A7	38			11	1Y7
1A8	37			12	1Y8
2A1	36	1	I 2 ▽	13	2Y1
2A2	35			14	2Y2
2A3	33			16	2Y3
2A4	32			17	2Y4
2A5	30 29			19 20	2Y5
2A6	29			20	2Y6
2A7	26			22	2Y7
2A8					2Y8

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SN74LVCH16541A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

SCAS567D - MARCH 1996 - REVISED JUNE 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance or power-off state, V_O	
(see Note 1)	–0.5 V to 6.5 V
Voltage range applied to any output in the high or low state, $V_{f O}$	
(see Notes 1 and 2)	–0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	±50 mA
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$ (see Note 2)	
Continuous current through V _{CC} or GND	
Package thermal impedance, θ_{JA} (see Note 3): DGG package	
DL package	
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

- 2. The value of V_{CC} is provided in the recommended operating conditions table.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

				MAX	UNIT	
Vaa	Supply voltage	Operating	2	3.6	V	
Vcc	Supply voltage	Data retention only	1.5		v	
VIH	High-level input voltage	$V_{CC} = 2.7 V \text{ to } 3.6 V$	2		V	
V_{IL}	Low-level input voltage	$V_{CC} = 2.7 V \text{ to } 3.6 V$		0.8	V	
VI	Input voltage		0	5.5	V	
Ve	Output voltage	High or low state	0	VCC	V	
VO		3 state	0	5.5	v	
lau	High-level output current	$V_{CC} = 2.7 V$		-12	mA	
ЮН	High-level output current	$V_{CC} = 3 V$		–24 r	ША	
lai	Low-level output current	$V_{CC} = 2.7 V$		12	12	mA
IOL		$V_{CC} = 3 V$		24	ША	
$\Delta t / \Delta v$	Input transition rise or fall rate			10	ns/V	
Τ _Α	Operating free-air temperature			85	°C	

NOTE 4: Unused control inputs must be held high or low to prevent them from floating.

SN74LVCH16541A **16-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS

SCAS567D - MARCH 1996 - REVISED JUNE 1997

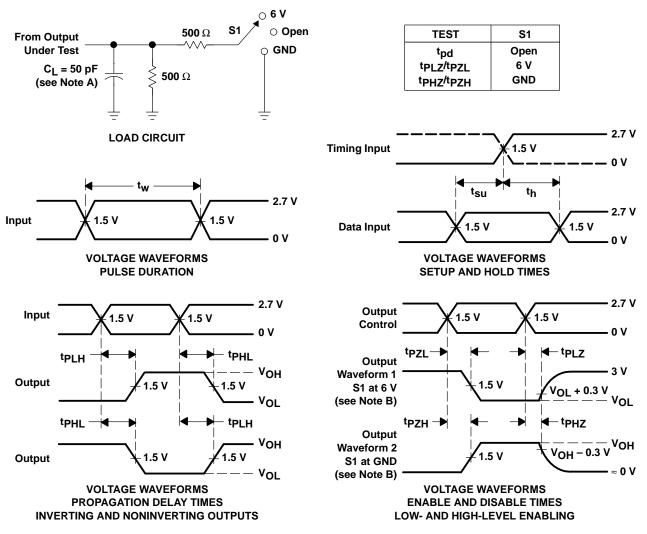
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CO	ONDITIONS	V _{CC}	MIN	TYP†	MAX	UNIT	
	I _{OH} = -100 μA		2.7 V to 3.6 V	V _{CC} -0.2				
\/			2.7 V	2.2			V	
VOH	$I_{OH} = -12 \text{ mA}$		3 V	2.4			v	
	I _{OH} = -24 mA		3 V	2.2				
	I _{OL} = 100 μA		2.7 V to 3.6 V			0.2		
V _{OL}	I _{OL} = 12 mA		2.7 V			0.4	V	
	I _{OL} = 24 mA		3 V			0.55		
lj	V _I = 0 to 5.5 V	V _I = 0 to 5.5 V				±5	μA	
	V _I = 0.8 V		3 V	75				
ll(hold)	$V_{I} = 2 V$		3 V	-75			μA	
	$V_{ } = 0 \text{ to } 3.6 \text{ V}^{\ddagger}$		3.6 V			±500		
l _{off}	$V_{I} \text{ or } V_{O} = 5.5 \text{ V}$		0			±10	μA	
I _{OZ}	V _O = 0 to 5.5 V		3.6 V			±10	μA	
laa	$V_{I} = V_{CC} \text{ or } GND$		0.001			20		
Icc	$3.6 V \le V_I \le 5.5 V_S$	IO = 0	3.6 V	3.6 V		20	μA	
Δlcc	One input at V _{CC} – 0.6 V,	Other inputs at V_{CC} or GND	2.7 V to 3.6 V			500	μA	
Ci	$V_{I} = V_{CC} \text{ or } GND$		3.3 V		5		pF	
Co	$V_{O} = V_{CC}$ or GND		3.3 V		6.5		pF	

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. [‡] This is the bus-hold maximum dynamic current required to switch the input from one state to another.

§ This applies in the disabled state only.

switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)


PARAMETER	FROM (INPUT)	то (оитрит)		V _{CC} = 3.3 V ± 0.3 V		2.7 V	UNIT
		(001-01)	MIN	MAX	MIN	MAX	
^t pd	А	Y	1.1	4.2		5	ns
ten	OE	Y	1.5	5.6		6.9	ns
^t dis	OE	Y	1.9	6.8		7.4	ns
t _{sk(o)} ¶				1.3			ns

¶ Skew between any two outputs of the same package switching in the same direction. This parameter is warranted but not production tested.

operating characteristics, V_{CC} = 3.3 V, T_A = 25°C

	PARAMETER		TEST C	ONDITIONS	TYP	UNIT	
	C _{pd} I	Dower discipation conscitutes per huffer/driver	Outputs enabled	$C_{L} = 0, \qquad f = 10 f$	C _L = 0, f = 10 MHz	35	~
		Power dissipation capacitance per buffer/driver	Outputs disabled			4	pF

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_Q = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.

 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tPZL and tPZH are the same as ten.
 - F. tpLz and tpHz are the same as tdis.
 - G. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated