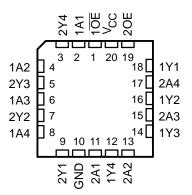
SCAS513C - JUNE 1995 - REVISED SEPTEMBER 1996

- **EPIC™** (Enhanced-Performance Implanted CMOS) 1-µm Process
- **Package Options Include Plastic** Small-Outline (DW), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages, Ceramic Chip Carriers (FK), Flat (W), and DIP (J, N) Packages

description

These octal buffers and line drivers are designed specifically to improve the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.


The 'AC241 are organized as two 4-bit buffers/drivers with separate complementary output-enable ($1\overline{OE}$ and 2OE) inputs. When $1\overline{OE}$ is low or 2OE is high, the device passes noninverted data from the A inputs to the Y outputs. When $1\overline{OE}$ is high or 2OE is low, the outputs are in the high-impedance state.

The SN54AC241 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74AC241 is characterized for operation from -40°C to 85°C.

SN54AC241 J OR W PACKAGE
SN74AC241 DB, DW, N, OR PW PACKAGE
(TOP VIEW)

	•	,
10E 1A1 2Y4 1A2 2Y3 1A3 2Y2 1A4 2Y1 GND	5 6	20 VCC 19 20E 18 1Y1 17 2A4 16 1Y2 15 2A3 14 1Y3 13 2A2 12 1Y4 11 2A1

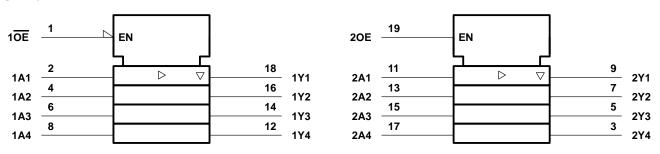
SN54AC241 ... FK PACKAGE (TOP VIEW)

FUNCTION TABLES

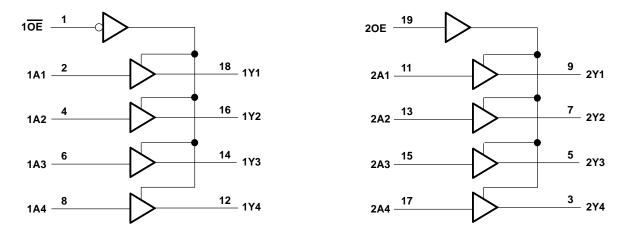
INPU	JTS	OUTPUT
1 <mark>OE</mark>	1A	1Y
L	Н	н
L	L	L
н	Х	Z

INPU	JTS	OUTPUT
20E	2A	2Y
Н	Н	Н
н	L	L
L	Х	Z

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


EPIC is a trademark of Texas Instruments Incorporated.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all narameters


SCAS513C - JUNE 1995 - REVISED SEPTEMBER 1996

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (see Note 1)	–0.5 V to V _{CC} + 0.5 V
Output voltage range, V _O (see Note 1)	–0.5 V to V _{CC} + 0.5 V
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	±20 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	±20 mA
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	±50 mA
Continuous current through V _{CC} or GND	±200 mA
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 2):	DB package 0.6 W
	DW package 1.6 W
	N package 1.3 W
	PW package 0.7 W
Storage temperature range, T _{stg}	–65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils, except for the N package, which has a trace length of zero.

recommended operating conditions (see Note 3)

			SN54A	SN54AC241		C241	UNIT
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		2	6	2	6	V
		$V_{CC} = 3 V$	2.1		2.1		
VIH	High-level input voltage	$V_{CC} = 4.5 V$	3.15		3.15		V
		V _{CC} = 5.5 V	3.85		3.85		
		$V_{CC} = 3 V$		0.9		0.9	
VIL	Low-level input voltage	$V_{CC} = 4.5 V$		1.35		1.35	V
		V _{CC} = 5.5 V		1.65		1.65	
VI	Input voltage		0	Vcc	0	VCC	V
Vo	Output voltage		0	VCC	0	VCC	V
		$V_{CC} = 3 V$	80	-12		-12	
ЮН	High-level output current	$V_{CC} = 4.5 V$	4	-24		-24	mA
		$V_{CC} = 5.5 V$		-24		-24	
		$V_{CC} = 3 V$		12		12	
IOL	Low-level output current	$V_{CC} = 4.5 V$		24		24	mA
		V _{CC} = 5.5 V		24		24	
$\Delta t/\Delta v$	Input transition rise or fall rate		0	8	0	8	ns/V
Т _А	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

SCAS513C - JUNE 1995 - REVISED SEPTEMBER 1996

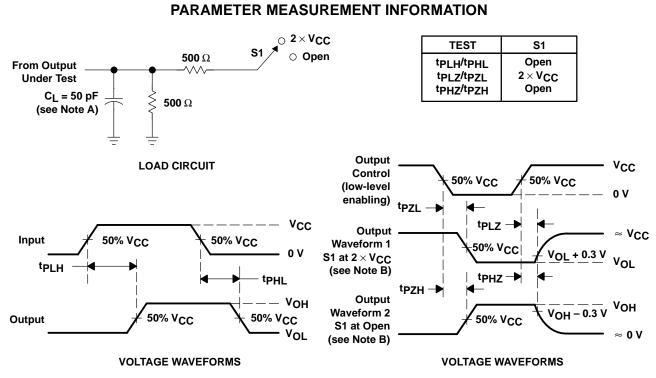
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	DAMETED		N	Т	₄ = 25°C		SN54A	C241	SN74AC241		LINUT
P/	ARAMEIER	TEST CONDITIONS	vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
			3 V	2.9			2.9		2.9		1
	I _{OH} = -50 μA	4.5 V	4.4			4.4		4.4			
		5.5 V	5.4			5.4		5.4			
	I _{OH} = -12 mA	3 V	2.56			2.4		2.46		v	
		4.5 V	3.86			3.7		3.76		v	
		$I_{OL} = -24 \text{ mA}$	5.5 V	4.86			4.7		4.76		
	I _{OH} = -50 mA [†]	5.5 V				3.85					
		I _{OH} = -75 mA [†]	5.5 V					2	3.85		
			3 V			0.1		0.1		0.1	v
		I _{OL} = 50 μA	4.5 V			0.1		<u>v</u> 0.1		0.1	
			5.5 V			0.1		Q 0.1		0.1	
		I _{OL} = 12 mA	3 V			0.36	20	0.5		0.44	
VOL		1	4.5 V			0.36	00	0.5		0.44	
		IOL = 24 INA	5.5 V			0.36	d'a	0.5		0.44	
		$I_{OL} = 50 \text{ mA}^{\dagger}$	5.5 V					1.65			
$V_{OH} + \frac{I_{OH} = -50 \ \mu A}{I_{OH} = -12 \ m A}$ $I_{OH} = -12 \ m A}{I_{OL} = -24 \ m A}$ $I_{OH} = -24 \ m A}{I_{OH} = -75 \ m A^{\dagger}}$ $I_{OH} = -75 \ m A^{\dagger}}$ $I_{OH} = -75 \ m A^{\dagger}}$ $I_{OL} = 50 \ \mu A$ $I_{OL} = 50 \ \mu A$ $I_{OL} = 50 \ \mu A$ $I_{OL} = 12 \ m A$ $I_{OL} = 24 \ m A$ $I_{OL} = 24 \ m A$ $I_{OL} = 24 \ m A$ $I_{OL} = 50 \ m A^{\dagger}}$ $I_{OL} = 50 \ m A^{\dagger}$ $I_{OL} = 75 \ m A^{\dagger}}$ $I_{OL} = 75 \ m A^{\dagger}$ $I_{OL} = 75 \ m A^{\dagger}}$ $I_{OL} = 75 \ m A^{\dagger}$ $I_{OL} = 75$	$I_{OL} = 75 \text{ mA}^{\dagger}$	5.5 V							1.65		
VOL IOL = 12 mA 3 V 0.36 0.5 0.44 IOL = 24 mA 4.5 V 0.36 0.5 0.44 IOL = 24 mA 5.5 V 0.36 0.5 0.44 IOL = 50 mA [†] 5.5 V 0.36 0.5 0.44 IOL = 50 mA [†] 5.5 V 0.36 0.5 0.44 IOL = 75 mA [†] 5.5 V 1.65 1.65 Data inputs VI = VCC or GND ±0.1 ±1 ±1	±1										
μ	Control inputs	$V_I = V_{CC}$ or GND	0.0 V			±0.1		±1		2.46 3.76 4.76 3.85 0.1 0.1 0.1 0.44 0.44 0.44 0.44	μA
I _{OZ}		V _O = V _{CC} or GND, VI(OE) = VIL or VIH	5.5 V			±0.25		±5		±2.5	μΑ
ICC		$V_{I} = V_{CC} \text{ or GND}, \qquad I_{O} = 0$	5.5 V			4		80		40	μA
		$V_{I} = V_{CC}$ or GND	5 V		2.5						pF

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	Т	ς = 25°C	;	SN54A	C241	SN74A	C241	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
^t PLH	А	v	1.5	6	9	1	12	1.5	10	ns
^t PHL	A	T	1.5	6	9	1	11.5	1	10.5	115
^t PZH		v	1.5	6.5	12.5		13	1	13	ns
^t PZL	OE of OE	I	1.5	7	12	2414	13	1.5	13	115
^t PHZ	OE or OE	v	2	8	12	1	13	2	12.5	
^t PLZ	OE OF OE	T	1.5	7	12.5	1	13	1	13.5	ns


SCAS513C - JUNE 1995 - REVISED SEPTEMBER 1996

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	Т	₄ = 25°C	;	SN54A	C241	SN74A	C241	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
^t PLH	А	v	1.5	5	7	1	9.5	1	7.5	20
^t PHL	A	т	1.5	4.5	7	1	<u>رک</u> 9	1	7.5	ns
^t PZH		v	1.5	5.5	9		10	1	9.5	20
^t PZL	OE or OE	T	1.5	5.5	9		10	1	9.5	ns
^t PHZ	OE or OE	V	1.5	6.5	10	1	11.5	1	10.5	
^t PLZ	OE OF OE	ſ	1.5	6	10	1	11.5	1	10.5	ns

operating characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER		TEST CON	TYP	UNIT	
C _{pd}	Power dissipation capacitance per buffer/driver	C _L = 50 pF,	f = 1 MHz	45	рF

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: $PRR \le 1$ MHz, $Z_O = 50 \Omega$, $t_f \le 2.5$ ns, $t_f \le 2.5$ ns.
 - D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated