	CDC244 OCTAL CLOCK DRIVER WITH 3-STATE OUTPUTS SCAS501A – APRIL 1995 – REVISED NOVEMBER 1995
 State-of-the-Art EPIC-IIB™ BiCMOS Design	DB PACKAGE
Significantly Reduces Power Dissipation	(TOP VIEW)
 750-ps Maximum Output Skew Between All	10E [1 20] V _{CC}
Outputs	1A1 [2 19] 20E
 Latch-Up Performance Exceeds 500 mA	2Y4 [] 3 18] 1Y1
Per JEDEC Standard JESD-17	1A2 [] 4 17] 2A4
 Typical V_{OLP} (Output Ground Bounce) < 1 V at V_{CC} = 5 V, T_A = 25°C 	2Y3 [] 5 16 [] 1Y2 1A3 [] 6 15 [] 2A3
 High-Drive Outputs (-32-mA I_{OH},	2Y2 [] 7 14]] 1Y3
64-mA I _{OL})	1A4 [] 8 13]] 2A2
 Packaged in Shrink Small-Outline Package 	2Y1 []9 12 [] 1Y4 GND [] 10 11]] 2A1

description

This octal clock driver is designed specifically to improve the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The CDC244 provides a low-cost solution in applications requiring skews of less than 500 ps.

The CDC244 is organized as two 4-bit buffers/line drivers with separate output-enable (\overline{OE}) inputs. When \overline{OE} is low, the device passes data from the A inputs to the Y outputs. When OE is high, the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The CDC244 is available in TI's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The CDC244 is characterized for operation from -40°C to 85°C.

(each driver)						
INP	JTS	OUTPUT				
OE	Α	Y				
L	Н	Н				
L	L	L				
Н	Х	Z				

FUNCTION TABLE

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC-IIB is a trademark of Texas Instruments Incorporated

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1995, Texas Instruments Incorporated

CDC244 OCTAL CLOCK DRIVER WITH 3-STATE OUTPUTS

SCAS501A - APRIL 1995 - REVISED NOVEMBER 1995

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

Supply voltage range, V _{CC}	\ldots –0.5 V to 7 V
Input voltage range, V _I (see Note 1)	\ldots –0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, V _O (see Note 1)	-0.5 V to 5.5 V
Current into any output in the low state, IO	128 mA
Input clamp current, I _{IK} (V _I < 0)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 2)	0.6 W
Storage temperature range, T _{stg}	. −65°C to 150°C

‡ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the *Package Thermal Considerations* application note in the 1994 *ABT Advanced BiCMOS Technology Data Book*, literature number SCBD002B.

recommended operating conditions (see Note 3)

		MIN	MAX	UNIT
fclock	Clock frequency			MHz
VCC	Supply voltage	4.5	5.5	V
VIH	High-level input voltage	2		V
VIL	Low-level input voltage		0.8	V
VI	Input voltage	0	VCC	V
ЮН	High-level output current		-32	mA
IOL	Low-level output current		64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate		5	ns/V
TA	Operating free-air temperature	-40	85	°C

NOTE 3: Unused or floating control inputs must be held high or low.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			T _A = 25°C					LINUT		
PARAMETER	TEST CONDITIONS			MIN	TYP†	MAX	MIN	MAX	UNIT	
VIK	$V_{CC} = 4.5 V,$	I _I = -18 mA				-1.2		-1.2	V	
	V _{CC} = 4.5 V,	$I_{OH} = -3 \text{ mA}$		2.5			2.5			
VOH	V _{CC} = 5 V,	$I_{OH} = -3 \text{ mA}$		3			3		V	
	$V_{CC} = 4.5 V$	$I_{OH} = -32 \text{ mA}$	I _{OH} = -32 mA				2			
VOL	V _{CC} = 4.5 V,	I _{OL} = 64 mA				0.55		0.55	V	
lj	V _{CC} = 5.5 V,	$V_I = V_{CC} \text{ or } GND$				±1		±1	μΑ	
IOZH	V _{CC} = 5.5 V,	V _O = 2.7 V				10‡		10‡	μΑ	
I _{OZL}	V _{CC} = 5.5 V,	V _O = 0.5 V	V _O = 0.5 V			-10‡		-10‡	μΑ	
loff	$V_{CC} = 0,$	VI or V_O ≤4.5 V				±100		±100	μΑ	
ICEX	V _{CC} = 5.5 V,	Vo = 5.5 V	Outputs high			50		50	μΑ	
ΙΟ§	V _{CC} = 5.5 V,	V _O = 2.5 V		-50	-100	-180	-50	-180	mA	
	$V_{CC} = 5.5 V,$ $V_{I} = V_{CC} \text{ or GND}$		Outputs high		1	250		250	μA	
ICC		I _O = 0,	Outputs low		24	30		30	mA	
			Outputs disabled		0.5	250		250	μA	
	V _{CC} = 5.5 V,	Data inputs	Outputs enabled			1.5		1.5	mA	
∆ICC¶	One input at 3.4 V, Other inputs at V_{CC} or GND		Outputs disabled			0.05		0.05		
		Control inputs	-			1.5		1.5		
Ci	VI = 2.5 V or 0.5 V				3				pF	
Co	V _O = 2.5 V or 0.5 V				8				pF	

† All typical values are at V_{CC} = 5 V.
‡ This limit may vary among suppliers.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

CDC244 OCTAL CLOCK DRIVER WITH 3-STATE OUTPUTS SCAS501A – APRIL 1995 – REVISED NOVEMBER 1995

switching characteristics over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figures 1 and 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, T _A = 25°C			MIN MA	
			MIN	TYP†	MAX		
^t PLH	A	v	1	2.6	4.1	4	6 ns
^t PHL		Ι	1	2.9	4.2	4	6
^t PZH	ŌĒ	v	1.1	3.1	4.6	5	1 ns
^t PZL			2.1	4.1	5.6	6	1
^t PHZ	OE	v	2.1	4.1	5.6	6	6 ns
^t PLZ			1.7	3.7	5.2	5	7
^t sk(o)	А	Y			750	75	0 ps

[†] All typical values are at $V_{CC} = 5$ V.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

CDC244 OCTAL CLOCK DRIVER WITH 3-STATE OUTPUTS

SCAS501A - APRIL 1995 - REVISED NOVEMBER 1995

Figure 2. Waveforms for Calculation of tsk(o)

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated