 Member of the Texas Instruments Widebus [™] Family 		ACKAGE P VIEW)
 Load Clock and Unload Clock Can Be Asynchronous or Coincident 	RESET	56 OE 55 Q17
• 256 Words by 18 Bits	D16	54 Q16
Low-Power Advanced CMOS Technology	D15 4	53 Q15
Full, Empty, and Half-Full Flags	D14 🛾 5	52 🛛 GND
Programmable Almost-Full/Almost-Empty	D13 🛛 6	51 Q14
Flag	D12 🛛 7	50 🛛 V _{CC}
• Fast Access Times of 15 ns With a 50-pF	D11 8	49 Q13
Load and All Data Outputs Switching	D10 9	48 Q12
Simultaneously	V _{CC} 10	47 Q11
• Data Rates From 0 to 50 MHz	D9 11	46 Q10 45 Q9
• 3-State Outputs	D8 12 GND 13	45 0 Q9 44 0 GND
 Pin Compatible With SN74ACT7804 and 	D7 114	43 Q8
SN74ACT7814	D6 115	42 Q7
 Packaged in Shrink Small-Outline 300-mil 	D5 16	41 Q6
(DL) Package Using 25-mil Center-to-Center	D4 🚺 17	40 🛛 Q5
Spacing	D3 [18	39] V _{CC}
	D2 🚺 19	38 Q4
description	D1 [20	37 🛛 Q3
A FIFO moment is a storage device that allows	D0 21	36 Q2
A FIFO memory is a storage device that allows data to be written into and read from its array at	<u> </u>	35 GND
independent data rates. The SN74ACT7806 is a	PEN 23	34 Q1
256-word by 18-bit FIFO for high speed and fast		33 Q0
access times. It processes data at rates up to		32 UNCK
50 MHz and access times of 15 ns in a bit-parallel	NC 26 NC 27	31 NC 30 NC

Data is written into memory on a low-to-high transition at the load clock (LDCK) input and is

read out on a low-to-high transition at the unload clock (UNCK) input. The memory is full when the number of words clocked in exceeds the number of words clocked out by 256. When the memory is full, LDCK signals have no effect on the data residing in memory. When the memory is empty, UNCK signals have no effect.

Status of the FIFO memory is monitored by the full (FULL), empty (EMPTY), half-full (HF), and almost-full/almost-empty (AF/AE) flags. The FULL output is low when the memory is full and high when the memory is not full. The EMPTY output is low when the memory is empty and high when it is not empty. The HF output is high when the FIFO contains 128 or more words and is low when it contains 127 or less words. The AF/AE status flag is a programmable flag. The first one or two low-to-high transitions of LDCK after reset are used to program the almost-empty offset value (X) and the almost-full offset value (Y) if program enable (PEN) is low. The AF/AE flag is high when the FIFO contains X or less words or (256 – Y) or more words. The AF/AE flag is low when the FIFO contains between (X + 1) and (255 – Y) words.

format.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments Incorporated

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1995, Texas Instruments Incorporated

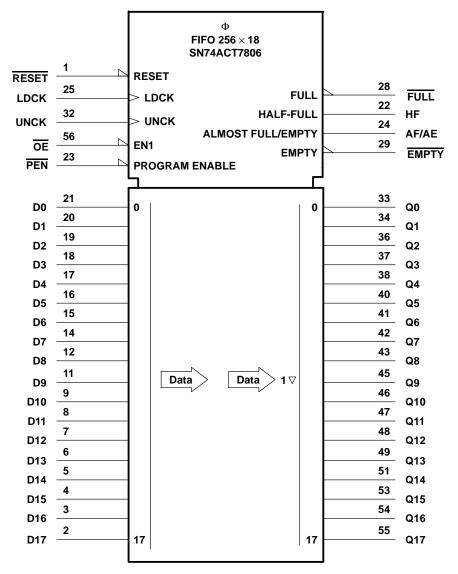
30 🛛 NC

29

EMPTY

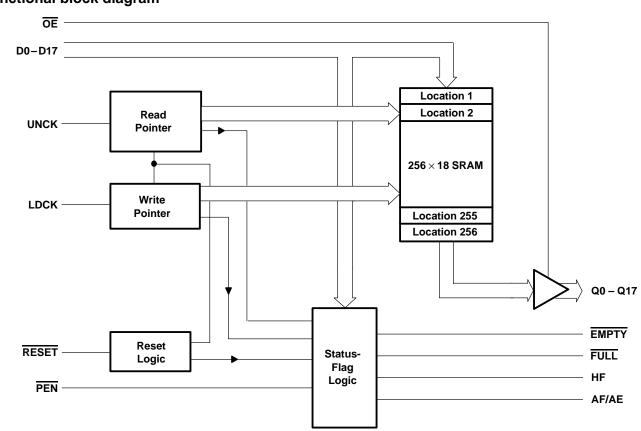
NC

28


SN74ACT7806 256 × 18 STROBED FIRST-IN, FIRST-OUT MEMORY SCAS438A – APRIL 1992 – REVISED SEPTEMBER 1995

description (continued)

A low level on the reset (RESET) input resets the internal stack pointers and sets \overline{FULL} high, HF low, and \overline{EMPTY} low. The Q outputs are not reset to any specific logic level. The FIFO must be reset upon power up. The first word loaded into empty memory causes \overline{EMPTY} to go high and the data to appear on the Q outputs. It is important to note that the first word does not have to be unloaded. The data outputs are noninverting with respect to the data inputs and are in the high-impedance state when the output-enable (\overline{OE}) input is high.


The SN74ACT7806 is characterized for operation from 0°C to 70°C.

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

functional block diagram

Terminal Functions

TERMINAL		1/0	DESCRIPTION				
NAME	NO.	10	DESCRIPTION				
AF/AE	24	0	Almost-full/almost-empty flag. Depth-offset values can be programmed for AF/AE, or the default value of 32 can be used for both the almost-empty offset (X) and the almost-full offset (Y). AF/AE is high when memory contains X or less words or $(256 - Y)$ or more words. AF/AE is high after reset.				
D0-D17	2-9, 11-12, 12-14	I	18-bit data input port				
EMPTY	29	0	Empty flag. EMPTY is high when the FIFO memory is not empty; EMPTY is low when the FIFO memory is empty or upon assertion of RESET.				
FULL	28	0	Full flag. FULL is high when the FIFO memory is not full or upon assertion of RESET; FULL is low when the FIFO memory is full.				
HF	22	0	Half-full flag. HF is high when the FIFO memory contains 128 or more words. HF is low after reset.				
LDCK	25	I	Load clock. Data is written to the FIFO on the rising edge of LDCK when \overline{FULL} is high.				
OE	56	Ι	Output enable. When \overline{OE} is high, the data outputs are in the high-impedance state.				
PEN	23	I	Program enable. After reset and before the first word is written to the FIFO, the binary value on $D0-D6$ is latched as an AF/AE offset value when \overrightarrow{PEN} is low and WRTCLK is high.				
Q0-Q17	33–34, 36–38, 40–43, 45–49, 51, 53–55	0	18-bit data output port				
RESET	1	Ι	Reset. A low level on this input resets the FIFO and drives FULL high and HF and EMPTY low.				
UNCK	32	Ι	Unload clock. Data is read from the FIFO on the rising edge of UNCK when \overline{EMPTY} is high.				

SN74ACT7806 256 × 18 STROBED FIRST-IN, FIRST-OUT MEMORY SCAS438A – APRIL 1992 – REVISED SEPTEMBER 1995

offset values for AF/AE

The almost-full/almost-empty flag has two programmable limits, the almost-empty offset value (X) and the almost-full offset value (Y). They can be programmed after the FIFO is reset and before the first word is written to memory. The AF/AE flag is high when the FIFO contains X or less words or (256 - Y) or more words.

To program the offset values, program enable (\overline{PEN}) can be brought low after reset only when LDCK is low. On the following low-to-high transition of LDCK, the binary value on D0–D6 is stored as the almost-empty offset value (X) and the almost-full offset value (Y). Holding \overline{PEN} low for another low-to-high transition of LDCK reprograms Y to the binary value on D0–D6 at the time of the second LDCK low-to-high transition. Writes to the FIFO memory are disabled while the offsets are programmed. A maximum value of 127 can be programmed for either X or Y (see Figure 1). To use the default values of X = Y = 32, \overline{PEN} must be held high.

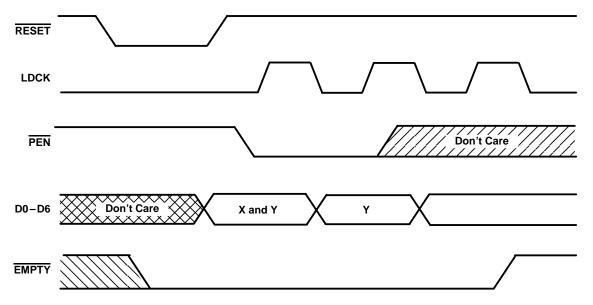


Figure 1. Programming X and Y Separately

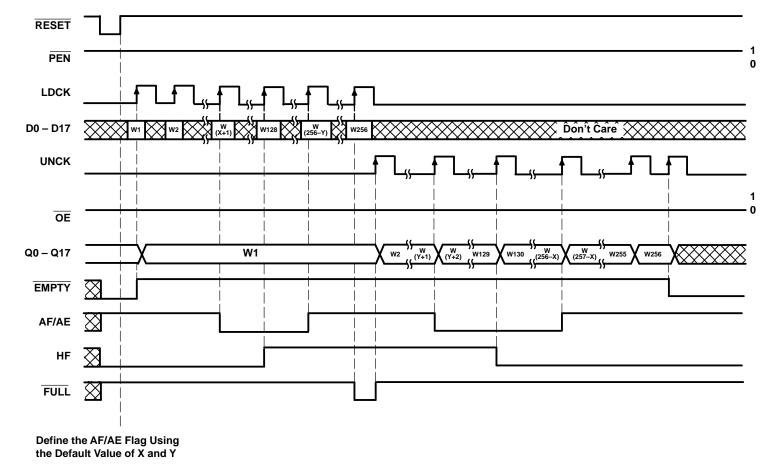


Figure 2. Write, Read, and Flag Timing Reference

256 × 18 STROBED FIRST-IN, FIRST-OUT MEMORY SCAS438A - APRIL 1992 - REVISED SEPTEMREP 1007

SN74ACT7806

TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SN74ACT7806 256 × 18 STROBED FIRST-IN, FIRST-OUT MEMORY

SCAS438A - APRIL 1992 - REVISED SEPTEMBER 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	
Voltage applied to a disabled 3-state output	5.5 V
Operating free-air temperature range, T _A Storage temperature range, T _{stg}	

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

			ÁCT7	′ACT7806-20		306-25	΄ΑCT7 8	06-40	
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		4.5	5.5	4.5	5.5	4.5	5.5	V
VIH	High-level input voltage		2		2		2		V
VIL	Low-level input voltage			0.8		0.8		0.8	V
ЮН	High-level output current	Q outputs, Flags		-8		-8		-8	mA
1		Q outputs		16		16		16	A
IOL	Low-level output current	Flags		8		8		8	
fclock	Clock frequency			50		40		25	MHz
		LDCK high or low	7		8		12		
	Dulas duration	UNCK high or low	7		8		12		ns
tw	Pulse duration	PEN low	7		8		12		
		RESET low	10		10		12		
		D0-D17 before LDCK↑	5		5		5		
t _{su}	Setup time	PEN before LDCK↑	5		5		5		ns
		LDCK inactive before RESET high	5		6		6		
		D0-D17 after LDCK↑	0		0		0		
	Hald Care	LDCK inactive after RESET high	5		6		6	16 mA 8 MH 25 MH ns	
^t h	Hold time	PEN low after LDCK↑	3		3		3		ns
		PEN high after LDCK \downarrow	0		0		0		
T _A	Operating free-air temperat	ure	0	70	0	70	0	70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PAR	AMETER		TEST CONDITIONS	MIN	TYP‡	MAX	UNIT
Vон		$V_{CC} = 4.5 V,$	I _{OH} = – 8 mA	2.4			V
Vai	Flags	V _{CC} = 4.5 V,	I _{OL} = 8 mA			0.5	V
VOL	Q outputs	V _{CC} = 4.5 V,	I _{OL} = 16 mA			0.5	v
II.		V _{CC} = 5.5 V,	$V_{I} = V_{CC} \text{ or } 0$			±5	μA
IOZ		V _{CC} = 5.5 V,	$V_{O} = V_{CC} \text{ or } 0$			±5	μA
ICC		V _{CC} = 5.5 V,	$V_{I} = V_{CC} - 0.2 V \text{ or } 0$			400	μA
∆ICC§		V _{CC} = 5.5 V,	One input at 3.4 V, Other inputs at V _{CC} or GND			1	mA
Ci		V _I = 0,	f = 1 MHz		4		pF
Co		V _O = 0,	f = 1 MHz		8		pF

[‡] All typical values are at V_{CC} = 5 V, T_A = 25°C. § This is the supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V_{CC}.

SN74ACT7806 256 × 18 STROBED FIRST-IN, FIRST-OUT MEMORY SCAS438A – APRIL 1992 – REVISED SEPTEMBER 1995

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figures 5 and 6)

	FROM	то	′ACT7806-20		ÁCT78	806-25	´ACT78	806-40		
PARAMETER	(INPUT)	(OUTPUT)	MIN	түр†	MAX	MIN	MAX	MIN	MAX	UNIT
f _{max}	LDCK or UNCK		50			40		25		MHz
4 .	LDCK [↑]		9		20	9	22	9	24	
^t pd	UNCK↑	Any Q	6	11.5	15	6	18	6	20	ns
t _{pd} ‡	UNCK↑			10.5						
tPLH	LDCK [↑]		6		15	6	17	6	19	
	UNCK↑	EMPTY	6		15	6	17	6	19	ns
^t PHL	RESET low		4		16	4	18	4	20	
^t PHL	LDCK [↑]		6		15	6	17	6	19	
	UNCK↑	FULL	6		15	6	17	6	19	ns
^t PLH	RESET low		4		18	4	20	4	22	
4 .	LDCK [↑]		7		18	7	20	7	22	
^t pd	UNCK↑	AF/AE	7		18	7	20	7	22	ns
^t PLH	RESET low		2		10	2	12	2	14	
^t PLH	LDCK [↑]		5		18	5	20	5	22	
^t PHL	UNCK↑	HF	7		18	7	20	7	22	ns
	RESET low		3		12	3	14	3	16	
t _{en}	OE	Any O	2		9	2	10	2	11	
^t dis		Any Q	2		10	2	11	2	12	ns

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.

[‡] This parameter is measured at $C_L = 30 \text{ pF}$ (see Figure 3).

operating characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER			TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance per FIFO channel	Outputs enabled	$C_L = 50 \text{ pF}, \text{ f} = 5 \text{ MHz}$	53	pF

TYPICAL CHARACTERISTICS

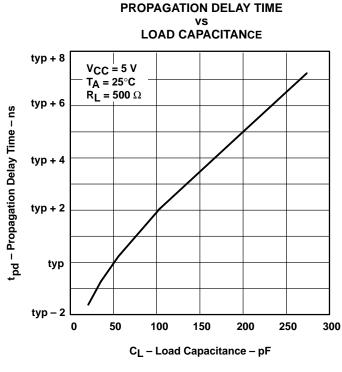


Figure 3

SUPPLY CURRENT vs **CLOCK FREQUENCY** 200 T_A = 75°C 180 $C_L = 0 pF$ V_{CC} = 5.5 V 160 I CC(f) – Supply Current – mA $V_{CC} = 5 V$ 140 120 100 V_{CC} = 4.5 V 80 60 40 20 0 0 10 20 30 40 50 60 70 fclock – Clock Frequency – MHz

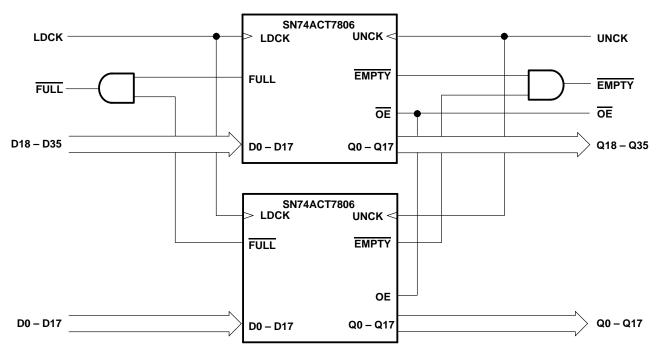
Figure 4

TYPICAL CHARACTERISTICS

calculating power dissipation

With $I_{CC(f)}$ taken from Figure 4, the maximum power dissipation (P_T) based on all data outputs changing states on each read can be calculated by:

 $\mathsf{P}_{\mathsf{T}} = \mathsf{V}_{\mathsf{C}\mathsf{C}} \times [\mathsf{I}_{\mathsf{C}\mathsf{C}(\mathsf{f})} + (\mathsf{N} \times \Delta \mathsf{I}_{\mathsf{C}\mathsf{C}} \times \mathsf{d}\mathsf{c})] + \Sigma(\mathsf{C}_{\mathsf{L}} \times \mathsf{V}_{\mathsf{C}\mathsf{C}}^2 \times \mathsf{f}_{\mathsf{o}})$


A more accurate power calculation based on device use and average number of data outputs switching can be found by:

$$\mathsf{P}_{\mathsf{T}} = \mathsf{V}_{\mathsf{C}\mathsf{C}} \times [\mathsf{I}_{\mathsf{C}\mathsf{C}} + (\mathsf{N} \times \Delta \mathsf{I}_{\mathsf{C}\mathsf{C}} \times \mathsf{d}\mathsf{c})] + \Sigma(\mathsf{C}_{\mathsf{p}\mathsf{d}} \times \mathsf{V}_{\mathsf{C}\mathsf{C}}^2 \times \mathsf{f}_{\mathsf{i}}) + \Sigma(\mathsf{C}_{\mathsf{L}} \times \mathsf{V}_{\mathsf{C}\mathsf{C}}^2 \times \mathsf{f}_{\mathsf{o}})$$

where:

ICC	=	power-down I _{CC} maximum
Ň	=	number of inputs driven by a TTL device
ΔI_{CC}	=	increase in supply current
dc	=	duty cycle of inputs at a TTL high level of 3.4 V
Cpd	=	power dissipation capacitance
C _{pd} CL	=	output capacitive load
f _i	=	data input frequency
f _o	=	data output frequency

APPLICATION INFORMATION

Figure 5. Word-Width Expansion: 256 Words by 36 Bits

• 3 V

0 V

 \approx 3.5 V

Vol

VOH

 $\approx 0 V$

0.3 V

PARAMETER MEASUREMENT INFORMATION

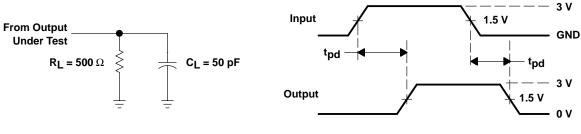
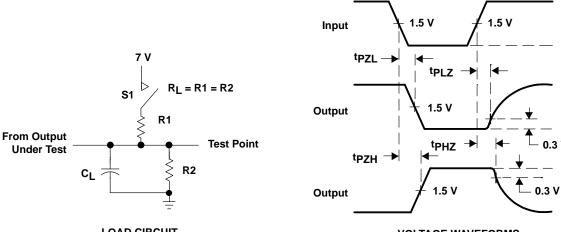



Figure 6. Standard CMOS Outputs (FULL, EMPTY, HF, AF/AE)

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES

PARAM	IETER	R1, R2	c∟†	S1
•	^t PZH	500 Ω	50 pF	Open
ten	^t PZL	500 22		Closed
+	^t PHZ	500 Ω	50 pF	Open
^t dis	^t PLZ	500 22	50 pr	Closed
^t pd		500 Ω	50 pF	Open

† Includes probe and test-fixture capacitance

Figure 7. 3-State Outputs (Any Q)

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated