16821...WD PACKAGE

16821...DL PACKAGE

- Members of the Texas Instruments Widebus[™] Family
 - Packaged in Shrink Small-Outline 300-mil Packages (DL) and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Pin Spacings
- Provides Extra Data Width Necessary for Wider Address/Data Paths or Buses with Parity
- Flow-Through Architecture to Optimize Printed-Circuit-Board (PCB) Layout
- Distributed V_{CC} and GND Pin Configuration to Minimize High-Speed Switching Noise
- EPIC[™] (Enhanced-Performance Implanted CMOS) 1-µm Process
- 500-mA Typical Latch-Up Immunity at 125°C

description

These 20-bit flip-flops feature three-state outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. They are particularly suitable for implementing wider buffer registers, I/O ports, bidirectional bus drivers with parity, and working registers.

These devices can be used as two 10-bit flip-flops or one 20-bit flip-flop.

On the positive transition of the clock the Q outputs will follow the D inputs. A buffered output enable (OE) input can be used to place the twenty outputs in either a normal logic state (high or low) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly. The output enable (\overline{OE}) does not affect the internal operation of the flip-flops. Old data can be retained or new data can be outputs are entered while the in the high-impedance state.

The 74AC16821 is packaged in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The 54AC16821 is characterized over the full military temperature range of -55° C to 125° C. The 74AC16821 is characterized for operation from -40° C to 85° C.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

(TOP VIEW)										
[7								
10E[1	56] 1CLK							
1Q1[2	55]1D1							
1Q2[3	54] 1D2							
GND[4	53] GND							
1Q3[5	52] 1D3							
1Q4[6	51] 1D4							
Vcc[7	50] V _{CC}							
1Q5[8	49] 1D5							
1Q6[9	48] 1D6							
1Q7[10	47] 1D7							
GND	11	46] GND							
1Q8[12	45] 1D8							
1Q9[13	44] 1D9							
1Q10	14	43] 1D10							
2Q1	15	42	2D1							
2Q2	16	41	2D2							
2Q3	17	40	2D3							
GND	18	39	GND							
2Q4	19	38	2D4							
2Q5	20	37	2D5							
2Q6	21	36	2D6							
Vcc	22	35	Vcc							
2Q7	23	34	2D7							
2Q8	24	33	2D8							
GND	25	32	GND							
2Q9	26	31	2D9							
2Q10	27	30	2D10							
2OE	28	29	2CLK							
4			-							

54AC16821,74AC16821 20-BIT BUS INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS DXXXX, SEPTEMBER 1991

AA, SEFTEINDER 1991

	INPUTS	OUTPUT	
OE	CLK	D	Q
L	\uparrow	Н	Н
L	\uparrow	L	L
L	L	Х	Q ₀
Н	Х	Х	Z

logic symbol †

logic diagram (positive logic)

To 9 Other Channels

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

54AC16821,74AC16821 20-BIT BUS INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS

DXXXX, SEPTEMBER 1991

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	\ldots -0.5 V to 7 V
Input voltage range, V _I (see Note 1)	$\dots \dots -0.5$ V to V _{CC} + 0.5 V
Output voltage range, V _O (see Note 1)	-0.5 V to V _{CC} + 0.5 V
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	$\dots \dots \pm 20 \text{ mA}$
Output clamp current, I_{OK} (V _O < 0 or V _O > V _{CC})	$\dots \dots \pm 50 \text{ mA}$
Continuous output current, I_O ($V_O = 0$ to V_{CC})	$\dots \dots \pm 50 \text{ mA}$
Continuous current through V _{CC} or GND pins	$\dots \dots \pm 500 \text{ mA}$
Maximum package power dissipation at $T_A = 55^{\circ}C$ (in still air)	1 W
Storage temperature range	–65°C to 150°C
resses beyond those listed under "absolute maximum ratings" may cause permanent damage to th	ne device. These are stress ratings only and

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

54AC16821 74AC16821 UNIT MIN NOM MAX MIN NOM MAX 5 5 ٧ Vcc Supply voltage 3 5.5 3 5.5 $V_{CC} = 3V$ 2.1 2.1 V_{CC} = 4.5 V 3.15 3.15 V Vн High-level input voltage $V_{CC} = 5.5 V$ 3.85 3.85 $V_{CC} = 3 V$ 0.9 0.9 $V_{CC} = 4.5 V$ 1.35 1.35 V Low-level input voltage VIL V_{CC} = 5.5 V 1.65 1.65 V ٧ı Input voltage 0 Vcc 0 Vcc 0 0 V ٧o Output voltage Vcc Vcc VCC = 3 V-4 -4 $V_{CC} = 4.5 V$ High-level output current -24 -24 mΑ ЮН $V_{CC} = 5.5 V$ -24 -24 12 VCC = 3 V 12 $V_{CC} = 4.5 V$ 24 24 IOL Low-level output current mΑ $V_{CC} = 5.5 V$ 24 24 10 0 10 ns/V $\Delta t / \Delta v$ Input transition rise or fall rate 0 Operating free-air temperature -55 125 -40 85 °C TA

recommended operating conditions (see Note 2)

NOTE 2: Unused or floating (input or I/O) must be held high or low

54AC16821,74AC16821 Header line 2 WITH 3-STATE OUTPUTS DXXXX, SEPTEMBER 1991

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				Т	₄ = 25°C		54AC1	6821	74AC1	6821	
P	ARAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNI
			3 V	2.9			2.9		2.9		
		I _{OH} = -50 μA	4.5 V	4.4			4.4		4.4		
			5.5 V	5.4			5.4		5.4		
VOH	$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.4		2.48			
		4.5 V	3.94			3.7		3.8		V	
		$I_{OH} = -24 \text{ mA}$	5.5 V	4.94			4.7		4.8		
		I _{OH} = -50 mA [†]	5.5 V				3.85				
		I _{OH} = -75 mA [†]	5.5 V						3.85		υ Ν Π ν ν μΑ μΑ ρF
		3 V			0.1		0.1		0.1		
		I _{OL} = 50 μA	4.5 V			0.1		0.1		0.1	l
			5.5 V			0.1		0.1		0.1	
		I _{OL} = 12 mA	3 V			0.36		0.5		0.44	v
/OL			4.5 V			0.36		0.5		0.44	
		I _{OL} = 24 mA	5.5 V			0.36		0.5		0.44	
		$I_{OL} = 50 \text{ mA}^{\dagger}$	5.5 V					1.65			
		I _{OL} = 75 mA†	5.5 V							1.65	
I	Control inputs	$V_{I} = V_{CC}$ or GND	5.5 V			±0.1		±1		±1	μA
oz	A or B ports‡	$V_{O} = V_{CC}$ or GND	5.5 V			±0.5		±10		±5	μA
CC		$V_{I} = V_{CC} \text{ or } GND, I_{O} = 0$	5.5 V			8		160		80	μA
2 _i	Control inputs	V _I = V _{CC} or GND	5 V		4.5						
Cio	A or B ports	$V_{O} = V_{CC}$ or GND	5 V		16						pF

T Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

 \ddagger For I/O ports, the parameter IOZ includes the input leakage current.

timing requirements over recommended operating free-air temperature range, $V_{CC} = 3.3 V \pm 0.3 V$

		T _A = 25°C		5°C 54AC16821		74AC16821		
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
fclock	Clock frequency							MHz
t _w	Pulse duration, CLK high or low							ns
t _{su}	Setup time, data before CLK1							ns
th	Hold time, data after CLK↑							ns

timing requirements over recommended operating free-air temperature range, $V_{CC} = 5 V \pm 0.5 V$

		T _A = 25°C		54AC16821		74AC16821		
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
fclock	Clock frequency							MHz
tw	Pulse duration, CLK high or low							ns
t _{su}	Setup time, data before CLK [↑]							ns
t _h	Hold time, data after CLK1							ns

54AC16821,74AC16821 20-BIT BUS INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS

DXXXX, SEPTEMBER 1991

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

	FROM	то	T _A = 25°C			54AC16821		74AC16821			
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT	
^f max										MHz	
^t PLH	0.11	Any Q									
^t PHL	CLK									ns	
^t PZH	OE	Any Q								20	
^t PZL	OE									ns	
^t PHZ	OE										
^t PLZ		Any Q								ns	

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

	FROM	то	Т	₄ = 25°C	;	54AC ²	16821	74AC1	16821	
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
fmax										MHz
^t PLH										
^t PHL	CLK	Any Q								ns
^t PZH		A Q								ns
^t PZL	ŌĒ	Any Q								115
^t PHZ	OE	A Q								
^t PLZ	UE	Any Q								ns

operating characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER			TEST CO	ТҮР	UNIT	
		Outputs enabled				_
Cpd	Power dissipation capacitance per flip-flop	Outputs disabled	C _L = 50 pF,	f = 1 MHz		pF

54AC16821,74AC16821 20-BIT BUS INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS DXXXX, SEPTEMBER 1991

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_f \leq 3 ns, t_f \leq 3 ns. For testing pulse duration: $t_r = t_f = 1$ to 3 ns. Pulse polarity can be either high-to-low-to-high or low-to-high-to-low.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PRODUCT PREVIEW

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated