54AC16541, 74AC16541 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCAS400 – JANUARY 1992

 Members of the Texas Instruments Widebus™ Family 	AC16541 WD PACKAGE AC16541 DL PACKAGE (TOP VIEW)	
• Packaged in Shrink Small-Outline 300-mil		
Packages (DL) and 380-mil Fine-Pitch		10E2
Ceramic Flat Packages (WD) Using 25-mil	1Y1[] 2 47[] [·]	
Center-to-Center Pin Spacings	1Y2[3 46]	1A2
 Flow-Through Architecture Optimizes 	GND [] 4 45] 0	GND
Printed Circuit Board (PCB) Layout	1Y3[5 44] [·]	
 Distributed V_{CC} and GND Pin Configuration 	1Y4[6 43]	1A4
Minimizes High-Speed Switching Noise	V _{CC} [7 42]	V _{CC}
withinizes high-speed Switching Noise	1Y5[8 41]	1A5
 EPIC[™] (Enhanced-Performance Implanted 	1Y6[9 40] [·]	
CMOS) 1-µm Process	GND [10 39] (
• 500-mA Typical Latch-Up Immunity at 125°C	1Y7[11 38] [·]	1A7
· · · · · · · · · · · · · · · · · · ·	1Y8[12 37] 1	1A8
description	2Y1 🛛 13 36 🗍 2	2A1
	2Y2 14 35	
These devices are noninverting 16-bit buffer	GND 15 34 0	GND
composed of two 8-bit sections with separate	2Y3 16 33 2	
output-enable signals. For eith <u>er 8</u> -bit b <u>uffer</u>	2Y4 17 32 2	2A4
section, the two output-enable (10E1 and 10E2	V _{CC} [] 18 31 [] \	
or $2\overline{OE1}$ and $2\overline{OE2}$) inputs must both be low for the	2Y5 19 30 2	
corresponding Y outputs to be active. If either	2Y6 20 29 2	
output-enable input is high, the outputs of that	GND 21 28	
8-bit buffer section are in the high-impedance	2Y7 22 27 2	
state.	<u>2Y8</u> 23 26 2	2 <u>A8</u>

The 74AC16541 is packaged in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The 54AC16541 is characterized for operation over the full military temperature range of -55° C to 125° C. The 74AC16541 is characterized for operation from -40° C to 85° C.

FUNCTION TABLE	Ξ
(each 8-bit section	I)

Γ		OUTPUT		
	OE	OE	DIR	Y
Γ	L	L	L	L
	L	L	Н	н
	Н	Х	Х	Z
	Х	Н	Х	Z

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

54AC16541, 74AC16541 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS

SCAS400 – JANUARY 1992

logic symbol[†]

logic diagram (positive logic)

TO 7 OTHER CHANNELS

TO 7 OTHER CHANNELS

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers are for DW, JT, and NT packages

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

	$1/t_0 7/$
Supply voltage range, V _{CC} –0.5	
Input voltage range, V _I (see Note 1)	_C + 0.5 V
Output voltage range, V _O (see Note 1) $\dots \dots \dots$	_C + 0.5 V
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{CC})	$\pm 20 \text{ mA}$
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC})	$\pm 50 \text{ mA}$
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	$\pm 50 \text{ mA}$
Continuous current through V _{CC} or GND pins	±400 mA
Maximum package power dissipation at T _A or GND pins	0.85 W
Storage temperature range	to 150°C
‡ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress rating	gs only and
functional operation of the device at these or any other conditions beyond those indicated under "recommended operating condit	ions" is not

implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 2)

			54	54AC16541		74AC16541			
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		3	5	5.5	3	5	5.5	V
		V _{CC} = 3 V	2.1			2.1			
VIН	High-level input voltage	$V_{CC} = 4.5 V$	3.15			3.15			V
		V _{CC} = 5.5 V	3.85			3.85			
VIL		V _{CC} = 3 V			0.9			0.9	
	Low-level input voltage	$V_{CC} = 4.5 V$			1.35			1.35	V
		V _{CC} = 5.5 V			1.65			1.65	
٧ _I	Input voltage		0		VCC	0		VCC	V
٧o	Output voltage		0		VCC	0		VCC	V
		VCC = 3 V			-4			-4	mA
ЮН	High-level output current	$V_{CC} = 4.5 V$			-24			-24	
		V _{CC} = 5.5 V			-24			-24	
		V _{CC} = 3 V			12			12	
IOL	Low-level output current	V _{CC} = 4.5 V			24			24	mA
		V _{CC} = 5.5 V			24			24	
∆t/∆v	Input transition rise or fall rate	·	0		10	0		10	ns/V
Тд	Operating free-air temperature		-55		125	-40		85	°C

NOTE 2: Unused or floating (input or I/O) must be held high or low

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			Т	A = 25°C		54AC1	6541	74AC16541		
PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
		3 V	2.9			2.9		2.9		
	I _{OH} = -50 μA	4.5 V	4.4			4.4		4.4		
		5.5 V	5.4			5.4		5.4		
	$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.4		2.48		
VOH		4.5 V	3.94			3.7		3.8		V
	$I_{OH} = -24 \text{ mA}$	5.5 V	4.94			4.7		4.8		
	$I_{OH} = -50 \text{ mA}^{\dagger}$	5.5 V				3.85				
	$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V						3.85		
		3 V			0.1		0.1		0.1	
	I _{OL} = 50 μA	4.5 V			0.1		0.1		0.1	
		5.5 V			0.1		0.1		0.1	
	I _{OL} = 12 mA	3 V			0.36		0.5		0.44	.,
VOL		4.5 V			0.36		0.5		0.44	V
	I _{OL} = 24 mA	5.5 V			0.36		0.5		0.44	
	$I_{OL} = 50 \text{ mA}^{\dagger}$	5.5 V					1.65			
	I _{OL} = 75 mA [†]	5.5 V							1.65	
II Control inputs		5.5 V			±0.1		±1		±1	μA
IOZ A or B ports‡	$V_{O} = V_{CC} \text{ or } GND$	5.5 V			±0.5		±10		±5	μA
lcc	$V_{I} = V_{CC} \text{ or } GND, I_{O} = 0$	5.5 V			8		160		80	μA
Ci Control inputs	$V_{I} = V_{CC} \text{ or } GND$	5 V		4.5						pF
Cio A or B ports	$V_{O} = V_{CC}$ or GND	5 V		16						pF

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

 \ddagger For I/O ports, the parameter I_{OZ} includes the input leakage current.

54AC16541, 74AC16541 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS

SCAS400 – JANUARY 1992

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V

	FROM	то	Т	λ = 25°C	;	54AC1	6541	74AC1	6541	
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
^t PLH										
^t PHL	A	Y								ns
^t PZH										
^t PZL	OE	Y								ns
^t PHZ										
^t PLZ	OE	Y								ns

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V

	FROM	то	Т	₄ = 25°C	;	54AC1	6541	74AC1	6541	
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
^t PLH										
^t PHL	A	Y								ns
^t PZH										
^t PZL	OE	Y								ns
^t PHZ										
^t PLZ	ŌE	Y								ns

operating characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER			TEST CO	TYP	UNIT	
		Outputs enabled				
Cpd	Power dissipation capacitance per transceiver	Outputs disabled	C _L = 50 pF	f = 1 MHz		pF

PARAMETER MEASUREMENT INFORMATION

- - B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_f \leq 3 ns, t_f \leq 3 ns. For testing pulse duration: $t_{f} = t_{f} = 1$ to 3 ns. Pulse polarity can be either high-to-low-to-high or low-to-high-to-low. C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
 - Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated