SCAS399A – JANUARY 1992

|     |                                                                                                                   |                                      |          | SCAS399A -                              |
|-----|-------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------|-----------------------------------------|
| •   | <ul> <li>Members of the Texas Instruments</li> <li>Widebus<sup>™</sup> Family</li> </ul>                          | 16474 WD PACKAGE<br>16474 DL PACKAGE | (TOP VIE | : MA()                                  |
|     | Packaged in Shrink Small-Outline 300-mil                                                                          |                                      |          |                                         |
|     | Packages (DL) and 380-mil Fine-Pitch<br>Ceramic Flat Packages (WD) Using 25-mil<br>Center-to-Center Pin Spacings  | 1 <mark>0EAB</mark> [<br>1CLKAB[     |          | 56 ] 1 <mark>0EBA</mark><br>55 ] 1CLKBA |
|     |                                                                                                                   | 1A1[                                 | 3        | 54 🛛 1B1                                |
|     | 3-State Outputs Drive Bus Lines Directly                                                                          | GND                                  | 4        | 53 🛛 GND                                |
|     | Flow-Through Architecture Optimizes                                                                               | 1A2[                                 |          | 52 ] 1B2                                |
|     | Printed Circuit Board (PCB) Layout                                                                                | 1A3[                                 |          | <sub>51</sub> ] 1B3                     |
|     | Distributed Vac and GND Bin Configuration                                                                         | V <sub>CC</sub>                      |          | 50 VCC                                  |
|     | <ul> <li>Distributed V<sub>CC</sub> and GND Pin Configuration<br/>Minimizes High-Speed Switching Noise</li> </ul> | 1A4                                  |          | 49 <b>]</b> 1B4                         |
|     |                                                                                                                   | 1A5[                                 |          | 48 ] 1B5                                |
| (   | ■ EPIC <sup>™</sup> (Enhanced-Performance Implanted                                                               | 1A6                                  |          | 47 ] 1B6                                |
|     | CMOS) 1-µm Process                                                                                                | GND                                  |          | 46 GND                                  |
| (   | 500-mA Typical Latch-Up Immunity at 125°C                                                                         | 1A7                                  |          | 45 ] 1B7                                |
|     |                                                                                                                   | 1A8[<br>1A9[                         |          | 44 ] 1B8<br>43 ] 1B9                    |
| des | cription                                                                                                          | 2A1                                  |          | 43    1B9<br>42    2B1                  |
|     | These devices are non-investing 10 bit registered                                                                 | 2A1<br>2A2                           |          | 42    2B1<br>41    2B2                  |
|     | These devices are non-inverting 18-bit registered<br>bus transceivers composed of two 9-bit sections              | 2A3                                  |          | 40 2B3                                  |
|     | with separate control signals. For either 9-bit                                                                   | GND                                  |          | 39 GND                                  |
|     | transceiver section, data flow in the A-to-B mode                                                                 | 2A4                                  |          | 38 1 2B4                                |
|     | is controlled by output-enable (10EAB or 20EAB)                                                                   | 2A5                                  |          | 37 1 2B5                                |
|     | and clock (1CLKAB or 2CLKAB) inputs. When                                                                         | 2A6                                  |          | 36 2B6                                  |
|     | 10EAB or 20EAB is low, the corresponding                                                                          |                                      |          |                                         |
|     | outputs are active (high or low) and take on either                                                               | 2A7                                  |          | 34 2B7                                  |
|     | the current data on low-to-high transition of                                                                     | 2A8                                  | 24       | 33 <b>5</b> 2B8                         |
|     | 1CLKAB or 2CLKAB or the previously stored data                                                                    | GND                                  | 25       | 32 GND                                  |
|     | if 1CLKAB or 2CLKAB is low.                                                                                       | 2A9                                  | 26       | 31 <b>6</b> 2B9                         |

2A9 26 31 2B9 2CLKAB 27 30 2CLKBA When 10EAB or 20EAB is high, the corresponding outputs are in the high-impedance state. does not affect the operation on the internal registers. Previously stored date can be related or new data can be entered while the outputs are in the high-impedance state.

Data flow from B to A is similar, but uses 10EBA and/or 20EBA and 1 CLKBA and/or 2CLKBA.

The 74AC16474 is packaged in TI's shrink small-outline packages (DL) with 25-mil center-to-center pin spacings. This package provides twice the I/O pin count and functionality of a standard small-outline package in the same PCB area.

The 54AC16474 is characterized over the full military temperature range of  $-55^{\circ}$ C to  $125^{\circ}$ C. The 74AC16474 is characterized for operation from  $-40^{\circ}$ C to  $85^{\circ}$ C.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.



SCAS399A – JANUARY 1992

#### FUNCTION TABLE<sup>†</sup>

|            | INPUTS | OUTPUTS |                  |
|------------|--------|---------|------------------|
| CLKAB      | OEAB   | Α       | В                |
| Х          | Н      | Х       | Z                |
| L          | L      | Х       | В <sub>0</sub> ‡ |
| ↑          | L      | н       | Н                |
| $\uparrow$ | L      | L       | L                |

<sup>†</sup> A-to-B data flow is shown. B-to-A data flow is controlled analogously by CLKBA and OEBA. <sup>‡</sup> Level of B before the indicated steady-state input conditions were established.

### logic symbol§



§ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.



SCAS399A – JANUARY 1992





SCAS399A – JANUARY 1992

### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)<sup>†</sup>

| Supply voltage range, V <sub>CC</sub>                          | –0.5 V to 7 V                                                      |
|----------------------------------------------------------------|--------------------------------------------------------------------|
| Input voltage range, V <sub>I</sub> (see Note 1)               |                                                                    |
| Output voltage range, V <sub>O</sub> (see Note 1)              | $\dots \dots \dots \dots -0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$ |
| Input clamp current, $I_{IK}$ ( $V_I < 0$ or $V_I > V_{CC}$ )  | ±20 mA                                                             |
| Output clamp current, $I_{OK}$ ( $V_O < 0$ or $V_O > V_{CC}$ ) | ±50 mA                                                             |
| Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$  | ±50 mA                                                             |
| Continuous current through V <sub>CC</sub> or GND pins         | ±450 mA                                                            |
| Storage temperature range                                      | −65°C to 150°C                                                     |

<sup>+</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.

#### recommended operating conditions (see Note 2)

|                     |                                    |                         | 54   | AC1647 | 4    | 74   | AC1647 | 4    |      |  |
|---------------------|------------------------------------|-------------------------|------|--------|------|------|--------|------|------|--|
|                     |                                    |                         | MIN  | NOM    | MAX  | MIN  | NOM    | MAX  | UNIT |  |
| VCC                 | Supply voltage                     |                         | 3    | 5      | 5.5  | 3    | 5      | 5.5  | V    |  |
|                     |                                    | V <sub>CC</sub> = 3 V   | 2.1  |        |      | 2.1  |        |      |      |  |
| VIH                 | High-level input voltage           | V <sub>CC</sub> = 4.5 V | 3.15 |        |      | 3.15 |        |      | V    |  |
|                     |                                    | V <sub>CC</sub> = 5.5 V | 3.85 |        |      | 3.85 |        |      |      |  |
|                     |                                    | V <sub>CC</sub> = 3 V   |      |        | 0.9  |      |        | 0.9  |      |  |
| VIL                 | Low-level input voltage            | V <sub>CC</sub> = 4.5 V |      |        | 1.35 |      |        | 1.35 | V    |  |
|                     |                                    | V <sub>CC</sub> = 5.5 V |      |        | 1.65 |      |        | 1.65 |      |  |
| VI                  | Input voltage                      |                         | 0    |        | VCC  | 0    |        | VCC  | V    |  |
| Vo                  | Output voltage                     |                         | 0    |        | VCC  | 0    |        | VCC  | V    |  |
|                     |                                    | V <sub>CC</sub> = 3 V   |      |        | -4   |      |        | -4   |      |  |
| ЮН                  | High-level output current          | V <sub>CC</sub> = 4.5 V |      |        | -24  |      |        | -24  | mA   |  |
|                     |                                    | V <sub>CC</sub> = 5.5 V |      |        | -24  |      |        | -24  |      |  |
|                     |                                    | V <sub>CC</sub> = 3 V   |      |        | 12   |      |        | 12   |      |  |
| IOL                 | Low-level output current           | V <sub>CC</sub> = 4.5 V |      |        | 24   |      |        | 24   | mA   |  |
|                     |                                    | V <sub>CC</sub> = 5.5 V |      |        | 24   |      |        | 24   |      |  |
| $\Delta t/\Delta v$ | Input transition rise or fall rate | •                       | 0    |        | 10   | 0    |        | 10   | ns/V |  |
| T <sub>A</sub>      | Operating free-air temperature     |                         | -55  |        | 125  | -40  |        | 85   | °C   |  |

NOTE 2: Unused or floating (input or I/O) must be held high or low

PRODUCT PREVIEW

SCAS399A – JANUARY 1992

|                               |                                              |       | Т    | λ = 25°C | 54AC16474 | 74AC16474 |            |
|-------------------------------|----------------------------------------------|-------|------|----------|-----------|-----------|------------|
| PARAMETER                     | TEST CONDITIONS                              | Vcc   | MIN  | ΤΥΡ ΜΑΧ  | MIN MAX   | MIN MAX   | UNIT       |
|                               |                                              | 3 V   | 2.9  |          | 2.9       | 2.9       |            |
|                               | I <sub>OH</sub> = -50 μA                     | 4.5 V | 4.4  |          | 4.4       | 4.4       |            |
|                               |                                              | 5.5 V | 5.4  |          | 5.4       | 5.4       |            |
|                               | $I_{OH} = -4 \text{ mA}$                     | 3 V   | 2.58 |          | 2.4       | 2.48      |            |
| ∕он                           |                                              | 4.5 V | 3.94 |          | 3.7       | 3.8       | V          |
|                               | I <sub>OH</sub> = -24 mA                     | 5.5 V | 4.94 |          | 4.7       | 4.8       |            |
|                               | $I_{OH} = -50 \text{ mA}^{\dagger}$          | 5.5 V |      |          | 3.85      |           |            |
|                               | I <sub>OH</sub> = -75 mA <sup>†</sup>        | 5.5 V |      |          |           | 3.85      |            |
|                               |                                              | 3 V   |      | 0.1      | 0.1       | 0.1       | 0.1<br>0.1 |
|                               | I <sub>OL</sub> = 50 μA                      | 4.5 V |      | 0.1      | 0.1       | 0.1       |            |
|                               |                                              | 5.5 V |      | 0.1      | 0.1       | 0.1       |            |
|                               | I <sub>OL</sub> = 12 mA                      | 3 V   |      | 0.36     | 0.5       | 0.44      | v          |
| /OL                           |                                              | 4.5 V |      | 0.36     | 0.5       | 0.44      |            |
|                               | I <sub>OL</sub> = 24 mA                      | 5.5 V |      | 0.36     | 0.5       | 0.44      |            |
|                               | I <sub>OL</sub> = 50 mA <sup>†</sup>         | 5.5 V |      |          | 1.65      | ;         |            |
|                               | I <sub>OL</sub> = 75 mA <sup>†</sup>         | 5.5 V |      |          |           | 1.65      |            |
| Control inputs                | $V_{I} = V_{CC}$ or GND                      | 5.5 V |      | ±0.1     | ±1        | ±1        | μA         |
| OZ A or B ports‡              | $V_0 = V_{CC}$ or GND                        | 5.5 V |      | ±0.5     | ±10       | ±5        | μA         |
|                               | $V_{I} = V_{CC} \text{ or } GND,  I_{O} = 0$ | 5.5 V |      | 8        | 160       | 80        | μA         |
| C <sub>i</sub> Control inputs | $V_{I} = V_{CC}$ or GND                      | 5 V   |      | 4.5      |           |           | pF         |
| C <sub>io</sub> A or B ports  | $V_{O} = V_{CC}$ or GND                      | 5 V   |      | 16       |           |           | pF         |

### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

<sup>†</sup> Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

<sup>‡</sup> For I/O ports, the parameter I<sub>OZ</sub> includes the input leakage current.

## timing requirements over recommended operating free-air temperature range, $V_{CC}$ = 3.3 V $\pm$ 0.3 V (unless otherwise noted)

|                 | PARAMETER                                                |      |  | 25°C | 54AC16474 |     | 74AC16474 |     |      |
|-----------------|----------------------------------------------------------|------|--|------|-----------|-----|-----------|-----|------|
|                 |                                                          |      |  | MAX  | MIN       | MAX | MIN       | MAX | UNIT |
| fclock          | clock Clock frequency                                    |      |  |      |           |     |           |     | MHz  |
| t <sub>su</sub> | t <sub>SU</sub> Setup time, data before CLK <sup>↑</sup> |      |  |      |           |     |           |     | ns   |
| th              | Hold time, data after CLK <sup>↑</sup>                   |      |  |      |           |     |           |     | ns   |
|                 |                                                          | High |  |      |           |     |           |     |      |
| tw              | Pulse duration                                           | Low  |  |      |           |     |           |     | ns   |

# timing requirements over recommended operating free-air temperature range, $V_{CC}$ = 5 V $\pm$ 0.5 V (unless otherwise noted)

|                 |                                                          |      | T <sub>A</sub> = 2 | 25°C | 54AC16474 |     | 74AC16474 |     |      |
|-----------------|----------------------------------------------------------|------|--------------------|------|-----------|-----|-----------|-----|------|
| PARAMETER       |                                                          |      | MIN                | MAX  | MIN       | MAX | MIN       | MAX | UNIT |
| fclock          | Clock frequency                                          |      |                    |      |           |     |           |     | MHz  |
| t <sub>su</sub> | t <sub>SU</sub> Setup time, data before CLK <sup>↑</sup> |      |                    |      |           |     |           |     | ns   |
| t <sub>h</sub>  | Hold time, data after CLK <sup>↑</sup>                   |      |                    |      |           |     |           |     | ns   |
|                 |                                                          | High |                    |      |           |     |           |     |      |
| tw              | Pulse duration                                           | Low  |                    |      |           |     |           |     | ns   |



SCAS399A – JANUARY 1992

# switching characteristics over recommended operating free-air temperature range, $V_{CC}$ = 3.3 V $\pm$ 0.3 V

| FROM             |         | то       | T <sub>A</sub> = 25°C |     | 54AC16474 |     | 74AC16474 |     |     |      |
|------------------|---------|----------|-----------------------|-----|-----------|-----|-----------|-----|-----|------|
| PARAMETER        | (INPUT) | (OUTPUT) | MIN                   | TYP | MAX       | MIN | MAX       | MIN | MAX | UNIT |
| fmax             |         |          |                       |     |           |     |           |     |     | MHz  |
| <sup>t</sup> PLH |         |          |                       |     |           |     |           |     |     |      |
| <sup>t</sup> PHL | CLK     | A or B   |                       |     |           |     |           |     |     | ns   |
| <sup>t</sup> PZH |         |          |                       |     |           |     |           |     |     |      |
| <sup>t</sup> PZL |         | A . D    |                       |     |           |     |           |     |     |      |
| <sup>t</sup> PHZ | ŌĒ      | A or B   |                       |     |           |     |           | ns  |     |      |
| <sup>t</sup> PLZ |         |          |                       |     |           |     |           |     |     |      |

## switching characteristics over recommended operating free-air temperature range, $V_{CC}$ = 5 V $\pm$ 0.5 V

|                  | FROM    | то       | Т   | <b>₄ = 25°C</b> | ;   | 54AC16474 |     | 74AC16474 |     |      |
|------------------|---------|----------|-----|-----------------|-----|-----------|-----|-----------|-----|------|
| PARAMETER        | (INPUT) | (OUTPUT) | MIN | TYP             | MAX | MIN       | MAX | MIN       | MAX | UNIT |
| fmax             |         |          |     |                 |     |           |     |           |     | MHz  |
| <sup>t</sup> PLH |         |          |     |                 |     |           |     |           |     |      |
| <sup>t</sup> PHL | CLK     | A or B   |     |                 |     |           |     |           |     | ns   |
| <sup>t</sup> PZH |         |          |     |                 |     |           |     |           |     |      |
| <sup>t</sup> PZL |         |          |     |                 |     |           |     |           |     |      |
| <sup>t</sup> PHZ | OE      | A or B   |     |                 |     |           | ns  |           |     |      |
| <sup>t</sup> PLZ |         |          |     |                 |     |           |     |           |     |      |

### operating characteristics, V<sub>CC</sub> = 5 V, T<sub>A</sub> = $25^{\circ}$ C

| PARAMETER |                                               |                  | TEST CON                | TYP       | UNIT |    |
|-----------|-----------------------------------------------|------------------|-------------------------|-----------|------|----|
|           |                                               | Outputs enabled  |                         |           |      |    |
| Cpd       | Power dissipation capacitance per transceiver | Outputs disabled | C <sub>L</sub> = 50 pF, | f = 1 MHz |      | pF |



SCAS399A - JANUARY 1992



NOTES: A. CL includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz, Z<sub>0</sub> = 50  $\Omega$ , t<sub>f</sub>  $\leq$  3 ns, t<sub>f</sub>  $\leq$  3 ns. For testing pulse duration: t<sub>r</sub> = t<sub>f</sub> = 1 to 3 ns. Pulse polarity can be either high-to-low-to-high or low-to-high-to-low.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms



#### **IMPORTANT NOTICE**

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated