SCAS389 - MARCH 1990

- High-Speed Bus Transceivers with Parity Generator/Checker
- Parity-Error Flag Open-Drain Output
- Register for Storage of the Parity Error Flag
- Inputs are TTL-Voltage Compatible
- Flow-Through Architecture to Optimize PCB Layout
- Center-Pin V_{CC} and GND Configurations to Minimize High-Speed Switching Noise
- EPIC[™] (Enhanced-Performance Implanted CMOS) 1-μm Process
- 500-mA Typical Latch-Up Immunity at 125°C
- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs

description

The 'ACT11853 is an 8-bit to 9-bit parity transceiver designed for two-way communication between data buses. When data is transmitted from the A bus to the B bus, a parity bit is generated. When data is transmitted from the B bus to the A bus with its corresponding parity bit, the ERR output will indicate whether or not an error in the B data has occurred. The output enable inputs OEA and OEB can be used to disable the device so that the buses are effectively isolated.

A 9-bit parity generator/checker generates a parity-odd output (PARITY) and monitors the parity of the I/O ports with an open-drain parity

error flag (\overline{ERR}). \overline{ERR} can be either passed, sampled, stored, or cleared from the latch using the \overline{LE} and \overline{CLR} control inputs. The error flag register is cleared with a low pulse on the \overline{CLR} input. When both \overline{OEA} and \overline{OEB} are low, data is transferred from the A bus to the B bus and inverted parity is generated. Inverted parity is a forced error condition that gives the designer more system diagnostic capability.

The 54ACT11853 is characterized for operation over the full military temperature range of -55° C to 125° C. The 74ACT11853 is characterized for operation from -40° C to 85° C.

EPIC is a trademark of Texas Instruments Incorporated.

NIL NIL

logic diagram (positive logic)

INPUTS				OUTPUT AND I/O						
OEB	OEA	CLR	LE	Ai Σ of H's	Bi [†] Σ of H's	A	в	PARITY	ERR [‡]	FUNCTION
L	Н	Х	Х	Odd Even	NA	NA	А	L H	NA	A data to B bus and Generate Parity
н	L	Х	L	NA	Odd Even	В	NA	NA	H L	B data to A bus and Check Parity
Н	L	Н	Н	NA	Х	Х	NA	NA	NC	Store Error Flag
Х	Х	L	Н	Х	Х	Х	NA	NA	Н	Clear Error Flag Register
н	Н	H L X X	H H L	X X L Odd H Even	Х	z	Z	Z	NСнгг	Isolation [§] (Parity check)
L	L	х	Х	Odd Even	NA	NA	А	H L	NA	A Data to B Bus and Generate Inverted Parity

FUNCTION TABLE

NA = Not applicable, NC = No change, X = Don't care

[†] Summation of high-level inputs includes PARITY along with Bi inputs.

[‡]Output states shown assume the ERR output was previously high.

§ In this mode, the ERR output, when enabled, shows inverted parity of the A bus.

error-flag waveforms

ERROR FLAG FUNCTION TABLE

INP	UTS	INTERNAL TO DEVICE	OUTPUT PRE-STATE	O <u>UTPU</u> T	FUNCTION
LE	CLR	POINT "P"	$\frac{RE}{ERR_{n-1}}^{\dagger}$	ERR	TONCTION
L	L	L H	Х	L H	PASS
L	н	L X H	X L H	L L H	SAMPLE
Н	L	Х	Х	Н	CLEAR
Н	Н	Х	L H	L H	STORE

 $+\overline{\text{ERR}}_{n-1}$ represents the state of the $\overline{\text{ERR}}$ output before any changes at $\overline{\text{CLR}}$, $\overline{\text{LE}}$, or point P.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (see Note 1)	$\dots \dots -0.5$ V to V _{CC} + 0.5 V
Output voltage range, V _O (see Note 1)	$\dots \dots -0.5$ V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{CC})	
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC})	
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	
Continuous current through V _{CC} or GND pins	$\dots \dots \pm 200 \text{ mA}$
Storage temperature range	65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

			54	ACT118	53	74ACT11853				
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
VCC	Supply voltage		3	5	5.5	3	5	5.5	V	
		VCC = 3 V	2.1			2.1				
VIH	High-level input voltage	V _{CC} = 4.5 V	3.15			3.15			V	
		V _{CC} = 5.5 V	3.85			3.85				
VIL		VCC = 3 V			0.9			0.9		
	Low-level input voltage	V _{CC} = 4.5 V			1.35			1.35	V	
		V _{CC} = 5.5 V			1.65			1.65		
VI	Input voltage		0		VCC	0		VCC	V	
VO	Output voltage		0		VCC	0		VCC	V	
		V _{CC} = 3 V			-4			-4		
ЮН	High-level output current	V _{CC} = 4.5 V			-24			-24	mA	
		V _{CC} = 5.5 V			-24			-24		
		V _{CC} = 3 V			12			12		
IOL	Low-level output current	V _{CC} = 4.5 V			24			24	mA	
		V _{CC} = 5.5 V			24			24	r I	
$\Delta t/\Delta v$	Input transition rise or fall rate	-	0		10	0		10	ns/V	
т _А	Operating free-air temperature		-55		125	-40		85	°C	

recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDITIONS		Τį	λ = 25°C		54AC	Г11853	74AC1	Г11853		
F			VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT	
IOH	ERR	AO = ACC	5.5 V			0.5		10		5	μΑ	
			3 V	2.9			4.4		4.4			
		I _{OH} = – 50 μA	4.5 V	4.4			4.4		4.4			
			5.5 V	5.4			5.4		5.4			
	All outputs except	I _{OH} = – 4 mA	3 V	2.58			2.4		2.48		V	
∨он	ERR	I _{OH} = – 24 mA	4.5 V	3.94			3.7		3.8		v	
			5.5 V	4.94			4.7		4.8			
		IOH = - 50 mA [†]	5.5 V				3.85					
		$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V						3.85			
			3 V			0.1		0.1		0.1		
		I _{OL} = 50 μA	4.5 V			0.1		0.1		0.1		
			5.5 V			0.1		0.1		0.1		
		I _{OL} = 12 mA	3 V			0.36		0.5		0.44	v	
VOL		lat = 24 mA	4.5 V			0.36		0.5		0.44	V	
		I _{OL} = 24 mA	5.5 V			0.36		0.5		0.44		
		IOL = 50 mA [†]	5.5 V					1.65				
		$I_{OL} = 75 \text{ mA}^{\dagger}$	5.5 V							1.65		
IOZ	A or B ports, PARITY	$V_{O} = V_{CC}$ or GND	5.5 V			± 0.5		± 10		±5	μA	
lj	OEA, OEB, LE, and CLR	V _I = V _{CC} or GND	5.5 V			± 0.1		± 1		±1	μΑ	
ICC		$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			8		160		80	μΑ	
∆ICC [‡]		One input at 3.4 V, Other inputs at GND or V _{CC}	5.5 V			0.9		1		1	mA	
Ci	OEA, OEB, LE, and CLR	V _I = V _{CC} or GND	5 V		4.5						pF	
C _{io}	A or B ports, PARITY	VI = V _{CC} or GND	5 V		12						pF	

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

[‡] This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V_{CC}.

timing requirements over recommended oepration free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Note 2)

			T _A =	25°C	54AC	Г11853	74AC1	Г11853	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
tw		LE high	5		5		5		
	Pulse duration	LE low	5		5		5		ns
		CLR low	5		5		5		
	Setup time, before LE↓	Bi and PARITY	14		14		14		
t _{su}	Setup time, before LEV	CLR inactive	2		2		2		ns
t _h	Hold time, Bi and PARITY afte	er LE↓	0		0		0		ns

NOTE 2: Load circuit and voltage waveforms are shown in Section 1 of Advanced CMOS Logic Data Book, 1990.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Note 2)

	-		-				
	FROM	то	T _A = 25°C	54ACT11853	74ACT11853	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	MIN TYP MAX	MIN MAX	MIN MAX		
^t PLH	A or B	B or A				ns	
^t PHL	AUID	BOIX				115	
^t PLH	A	PARITY					
^t PHL		FANIT				ns	
^t PZH	OEA or OEB	A or B				ns	
^t PZL		AUB					
^t PHZ	OEA or OEB	A or B				ns	
^t PLZ	OEA OI OEB						
^t PHL	LE	ERR				ns	
^t PLH	CLR	ERR				ns	
^t PLH	OEA	PARITY				ns	
^t PHL							
^t PLH	Bi/PARITY	ERR				200	
^t PHL						ns	

NOTE 2:Load circuits and voltage waveforms are shown in Section 1 of Advanced CMOS Logic Data Book, 1990.

operating characteristics, V_{CC} = 5 V, T_A = 25° C

	PARAMETER			TEST CONDITIONS	TYP	UNIT
C _{pd}		Outputs enabled	A to B		87	-5
	Dever dissinction conscitutes as the section	Outputs enabled	B to A	$C_{L} = 50 \text{ pF}, \text{ f} = 1 \text{ MHz}$	60	
	Power dissipation capacitance per transceiver	Outpute disabled	A to B	$C_{1} = 50 \text{ pc} \text{ f} = 1 \text{ MHz}$	28	pF
		Outputs disabled	B to A	$C_L = 50 \text{ pF}, \text{ f} = 1 \text{ MHz}$	8	

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated