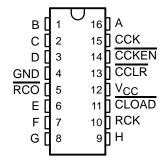
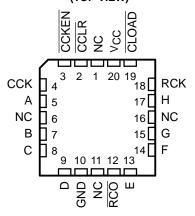
- Parallel 3-State I/O: Register Inputs/Counter Outputs
- Counter Has Direct Overriding Load and Clear
- Flow-Through Architecture Optimizes PCB Layout
- Center-Pin V_{CC} and GND Configurations Minimize High-Speed Switching Noise
- EPIC ™ (Enhanced-Performance Implanted CMOS) 1-μm Process
- 500-mA Typical Latch-Up Immunity at 125°C
- Package Options Include Plastic Small-Outline Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs

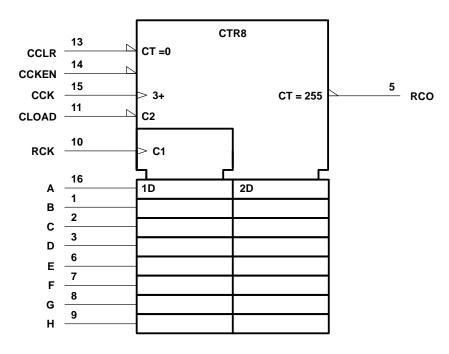

description

The 'AC11592 consists of a parallel input and an 8-bit storage register feeding an 8-bit binary counter. Both the register and the counter have individual positive edge-triggered clocks.

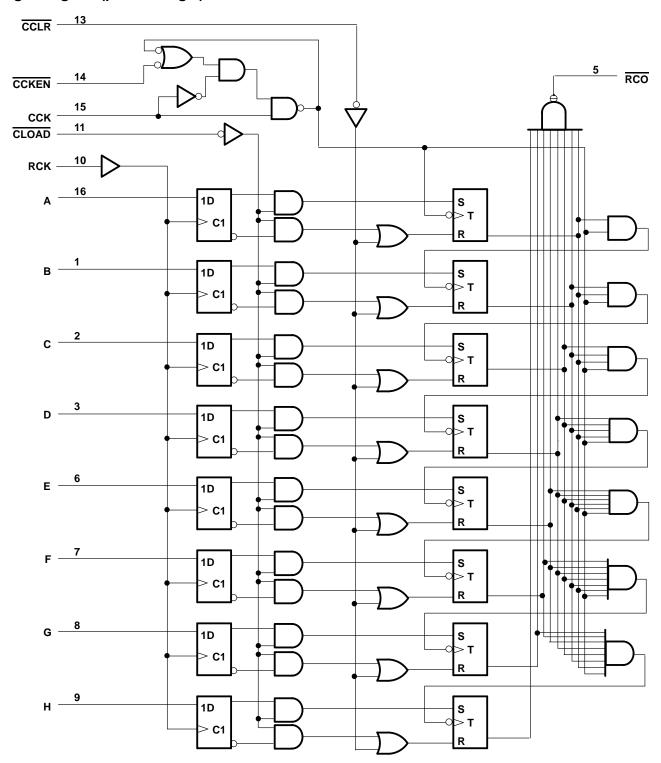

The counter (RCO) input has direct load and clear functions. A low-going RCO pulse will be obtained when the counter reaches the hex word FF.

Expansion is easily accomplished for two stages by connecting RCO of the first stage to CCKEN of the second stage. Cascading for larger count chains can be accomplished by connecting RCO of each stage to CCK of the following stage.

54AC11592 . . . J PACKAGE 74AC11592 . . . D OR N PACKAGE (TOP VIEW)

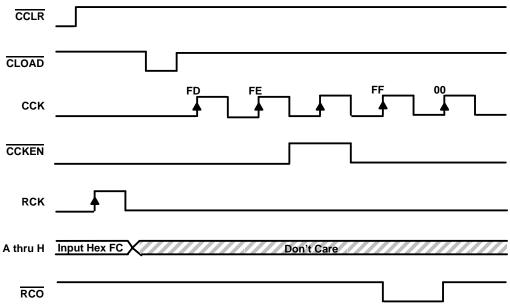

54AC11592...FK PACKAGE (TOP VIEW)

NC - No internal connection


The 54AC11592 is characterized for operation over the full military temperature range of -55° C to 125°C. The 74AC11592 is characterized for operation from -40° C to 85°C.

logic symbol†

 $\mbox{†}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, and N packages.


logic diagram (positive logic)

Pin numbers shown are for D, J, and N packages.

typical operating sequence

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I (see Note 1)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Output voltage range, VO (see Note 1)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	±20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC})	±50 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	±50 mA
Continuous current through V _{CC} or GND pins	±100 mA
Storage temperature range	−65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 2)

			54	54AC11592		74AC11592			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNII
VCC	Supply voltage		3	5	5.5	3	5	5.5	V
		V _{CC} = 3 V	2.1			2.1			
V_{IH}	High-level input voltage	$V_{CC} = 4.5 \text{ V}$	3.15			3.15			V
		$V_{CC} = 5.5 \text{ V}$	3.85			3.85			
V _{IL}		V _{CC} = 3 V			0.9			0.9	
	Low-level input voltage	$V_{CC} = 4.5 \text{ V}$			1.35			1.35	V
		$V_{CC} = 5.5 \text{ V}$		Z.	1.65			1.65	
٧ _I	Input voltage		0	200	VCC	0		VCC	V
۷o	Output voltage		0	7	VCC	0		VCC	٧
		V _{CC} = 3 V		5	-4			-4	
loh	High-level output current	$V_{CC} = 4.5 \text{ V}$	V C		-24			-24	mA
		$V_{CC} = 5.5 \text{ V}$	9		-24			-24	
		V _{CC} = 3 V			12			12	
I_{OL}	Low-level output current	$V_{CC} = 4.5 \text{ V}$			24			24	mA
	$V_{CC} = 5.5 \text{ V}$				24			24	
Δt/Δν	Input transition rise or fall rate		0		10	0		10	ns/V
T _A	Operating free-air temperature		- 55		125	-40		85	°C

NOTE 2: Unused or floating inputs must be held high or low.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST CONDITIONS	V	T	A = 25°C	;	54AC	11592	74AC11592		UNIT
PARAMETER		VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNII
		3 V	2.9			2.9		2.9		
	ΙΟΗ = - 50 μΑ	4.5 V	4.4			4.4		4.4		
		5.5 V	5.4			5.4		5.4		
Vari	$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.4		2.48		V
VOH	I _{OL} = – 24 mA	4.5 V	3.94			3.7		3.8		V
	I _{OL} = – 24 mA	5.5 V	4.94			4.7		4.8		
	$I_{OH} = -50 \text{ mA}^{\dagger}$	5.5 V				3.85	ly.			
	$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V					VIE	3.85		
	Ι _{ΟL} = 50 μΑ	3 V			0.1		0.1		0.1	
		4.5 V			0.1	7,	0.1		0.1	
		5.5 V			0.1	2	0.1		0.1	
Voi	I _{OL} = 12 mA	3 V			0.36	20	0.5		0.44	V
VOL	1- 24 mA	4.5 V			0.36	4	0.5		0.44	V
	I _{OL} = 24 mA	5.5 V			0.36		0.5		0.44	
	I _{OL} = 50 mA [†]	5.5 V					1.65			
	I _{OL} = 75 mA [†]	5.5 V							1.65	
l _I	V _I = V _{CC} or GND	5.5 V			±0.1		±1		±1	μΑ
loz	$V_O = V_{CC}$ or GND	5.5 V			±0.5		±10		±5	μΑ
Icc	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			8		160		80	μΑ
C _i	$V_I = V_{CC}$ or GND	5 V		4.5						pF

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted)

			T _A =	T _A = 25°C		T _A = 25°C		11592	74AC11592		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	UNII		
fclock	Clock frequency, CCK OR RCK								MHz		
		CCK high or low									
_	Dules duration	RCK high or low				2					
t _W	Pulse duration	CCLR low				4			ns		
		CLOAD low				W.			1		
		CCKEN low before CCK↑				Q					
		CCLR high before CCK↑			Ú]		
t _{su}	Setup time	CLOAD high before CCK↑			2				ns		
		RCK↑ before CLOAD↑†			20				1		
		Data A thru H before RCK↑			9						
4.	Hold time	Data A thru H after RCK↑							ns		
^t h	i ioiu tiiiie	All others							115		

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted)

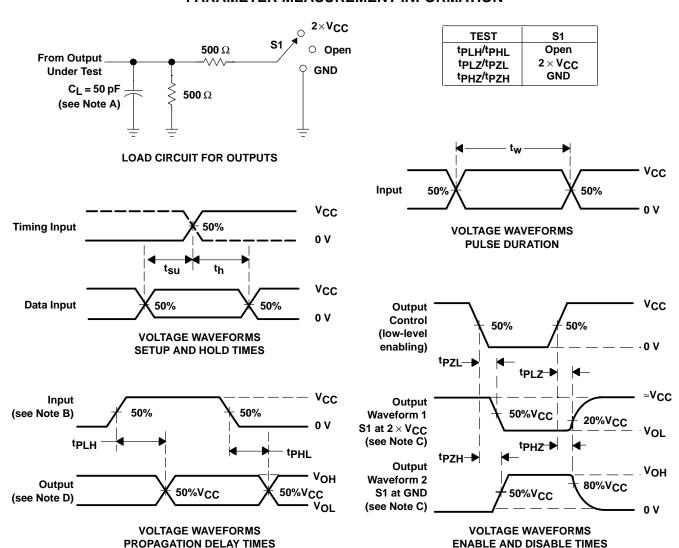
			 		T _A = 25°C		T _A = 25°C		T _A = 25°C		54AC	11592	74AC1	1592	UNIT
					MIN	MAX	UNII								
fclock	Clock frequency, CCK OR RCK								MHz						
		CCK high or low													
 _	Dulas duration	RCK high or low				4] _						
t _W	Pulse duration	CCLR low				16			ns						
		CLOAD low				F]						
		CCKEN low before CCK↑			,	Q									
		CCLR high before CCK↑			Ć										
t _{su}	Setup time	CLOAD high before CCK↑			20				ns						
		RCK↑ before CLOAD↑†			% 0				1						
		Data A thru H before RCK↑			4				1						
tı.	Hold time	Data A thru H after RCK↑													
^t h	Hold time	All others							ns						

[†] This time insures the data saved by RCK↑ will also be loaded into the counter.

PRODUCT PREVIEW

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	T _A = 25°C			54AC	11592	74AC1	1592	UNIT
PARAMETER	(INPUT)		MIN TYP MAX		MIN	MAX	MIN	MAX	UNIT	
f _{max}							1/2			MHz
^t PLH	сск	RCO					Z			ns
^t PHL	COR	KCO					B			113
^t PLH	CLOAD	CLOAD RCO				1	<u> </u>			ns
^t PHL	CLOAD	KCO				2				113
^t PHL	CCLR	RCO				Q _C				ns
^t PLH	RCK	RCO				Y _Q				ns
t _{PHL}	KOK	ROO								2


switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	то	T _A = 25°C			54AC	11592	74AC1	1592	LINIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
f _{max}				-			'n			MHz
^t PLH	ССК	RCO					VI.			20
^t PHL	CON	RCO				Z.				ns
^t PLH	CLOAD	AD RCO				7	٧.			ne
t _{PHL}	CLOAD	, KOO				3				ns
^t PHL	CCLR	RCO				Q _C				ns
t _{PLH}	RCK	RCO				4				ns
^t PHL] Non	NCO								113

operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	TYP	UNIT	
C _{pd}	Dower dissinction consistence	Outputs enabled	C ₁ = 50 pF. f = 1 MHz		pF
	Power dissipation capacitance	Outputs disabled	$C_L = 50 \text{ pF}, f = 1 \text{ MHz}$		pr

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: $PRR \le 10 \text{ MHz}$, $Z_0 = 50 \Omega$, $t_f \le 3 \text{ ns}$, $t_f \le 3 \text{ ns}$. For testing pulse duration: $t_f = t_f = 1 \text{ to } 3 \text{ ns}$. Pulse polarity can be either high-to-low-to-high or low-to-high-to-low.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated