	SN74LVC137A 3-LINE TO 8-LINE DECODER/DEMULTIPLEXER WITH ADDRESS LATCHES SCAS340C – MARCH 1994 – REVISED JANUARY 1997
● <i>EPIC</i> [™] (Enhanced-Performance Implanted CMOS) Submicron Process	D, DB, OR PW PACKAGE (TOP VIEW)
 Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C Typical V_{OHV} (Output V_{OH} Undershoot) > 2 V at V_{CC} = 3.3 V, T_A = 25°C 	$ \begin{array}{c ccc} A & 1 & 16 \\ B & 2 & 15 \\ C & 3 & 14 \\ \hline G2A & 4 & 13 \\ \end{array} \begin{array}{c} V_{CC} \\ Y1 \\ Y2 \end{array} $
 Inputs Accept Voltages to 5.5 V 	$G_{2B} [15] 12$ [13] 12 G2B [15] 12 [1 Y3
 Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages 	G1 [6 11] Y4 Y7 [7 10] Y5 GND [8 9] Y6

description

This 3-line to 8-line decoder/demultiplexer with latches on three address inputs is designed for 2.7-V to 3.6-V V_{CC} operation.

The SN74LVC137A is designed for high-performance memory-decoding or data-routing applications requiring very short propagation delay times. In high-performance memory systems, this decoder can be used to minimize the effects of system decoding. When employed with high-speed memories utilizing a fast enable circuit, the delay times of this decoder and the enable time of the memory are usually less than the typical access time of the memory. This means that the effective system delay introduced by the decoder is negligible.

When the latch-enable ($\overline{G}2A$) input is low, the SN74LVC137A acts as a decoder/demultiplexer. When $\overline{G}2A$ transitions from low to high, the address present at the inputs (A, B, and C) is stored in the latches. Further address changes are ignored, provided $\overline{G}2A$ remains high. The output-enable (G1 and $\overline{G}2B$) inputs control the outputs independently of the select or latch-enable inputs. All of the outputs are forced high if G1 is low or G2B is high.

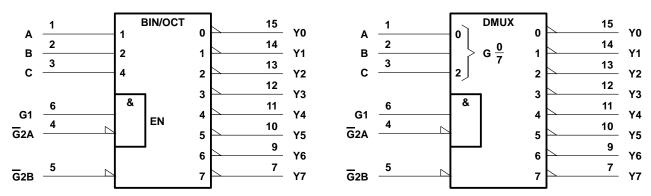
Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

The SN74LVC137A is characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated

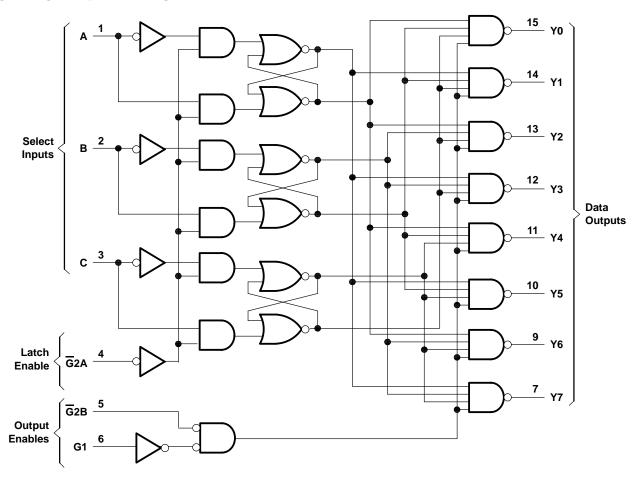
PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.


Copyright © 1997, Texas Instruments Incorporated

SN74LVC137A 3-LINE TO 8-LINE DECODER/DEMULTIPLEXER WITH ADDRESS LATCHES

SCAS340C - MARCH 1994 - REVISED JANUARY 1997

FUNCTION TABLE													
		INPU	ГS										
LATCH ENABLE	OUTPUT ENABLE		SELECT						OUTI	PUTS			
G2A	G1	G2B	С	В	Α	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Х	Х	Н	Х	Х	Х	н	Н	Н	Н	Н	Н	Н	Н
Х	L	х	Х	Х	Х	н	Н	Н	Н	Н	Н	Н	н
L	Н	L	L	L	L	L	н	Н	Н	Н	Н	н	н
L	Н	L	L	L	Н	н	L	Н	Н	Н	Н	н	н
L	Н	L	L	Н	L	н	н	L	Н	Н	Н	н	н
L	н	L	L	Н	Н	н	н	н	L	Н	Н	н	н
L	н	L	н	L	L	н	н	н	Н	L	Н	н	н
L	н	L	н	L	Н	н	н	н	н	Н	L	н	н
L	н	L	н	Н	L	н	Н	Н	Н	Н	Н	L	Н
L	н	L	н	Н	Н	н	Н	Н	Н	Н	Н	Н	L
н	н	L	х	Х	Х	Outputs	s corresp	onding to	o stored	address	= L; all o	ther outp	outs = H


logic symbols (alternatives)[†]

[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 6.5 V
Input voltage range, V _I (see Note 1)	–0.5 V to 6.5 V
Output voltage range, V _O (see Notes 1 and 2)	-0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I_{OK} (V _O < 0 or V _O > V _{CC})	±50 mA
Continuous output current, I_{O} (V _O = 0 to V _{CC})	±50 mA
Continuous current through V _{CC} or GND	
Package thermal impedance, θ_{JA} (see Note 3): D package	113°C/W
DB package	
PW package	149°C/W
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - 2. The value of V_{CC} is provided in the recommended operating conditions table.
 - 3. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

SN74LVC137A **3-LINE TO 8-LINE DECODER/DEMULTIPLEXER** WITH ADDRESS LATCHES

SCAS340C - MARCH 1994 - REVISED JANUARY 1997

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
Vcc	Supply voltage	Operating	2	3.6	V
	Supply voltage	Data retention only	1.5		v
VIH	High-level input voltage V _{CC} = 2.7 V to 3.6 V		2		V
VIL	Low-level input voltage $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$				V
VI Input voltage					V
Vo	Output voltage				V
юн	High-level output current	$V_{CC} = 2.7 V$		-12	mA
		$V_{CC} = 3 V$		-24	IIIA
IOL	Low-level output current	$V_{CC} = 2.7 V$		12	mA
		$V_{CC} = 3 V$		24	IIIA
$\Delta t/\Delta v$	Input transition rise or fall time		0	10	ns/V
TA	-40	85	°C		

NOTE 4: Unused inputs must be held high or low to prevent them from floating.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CO	V _{CC}	MIN	түр†	MAX	UNIT				
Vон	I _{OH} = -100 μA	2.7 V to 3.6 V	V _{CC} -0.2							
	10 m 4	2.7 V	2.2			V				
	I _{OH} = -12 mA	3 V	2.4							
	I _{OH} = -24 mA		3 V	2.2			1			
	I _{OL} = 100 μA		2.7 V to 3.6 V			0.2				
VOL	I _{OL} = 12 mA		2.7 V			0.4	V			
	I _{OL} = 24 mA		3 V			0.55				
Ц	V _I = 5.5 V or GND		3.6 V			±5	μA			
I _{OZ}	$V_{O} = V_{CC}$ or GND		3.6 V			±10	μA			
ICC	$V_I = V_{CC}$ or GND,	I ^O = 0	3.6 V			10	μA			
ΔICC	One input at V _{CC} – 0.6 V,	Other inputs at V_{CC} or GND	2.7 V to 3.6 V			500	μA			
Ci	$V_I = V_{CC}$ or GND		3.3 V				pF			
Co	$V_{O} = V_{CC}$ or GND		3.3 V				pF			

[†] All typical values are at $V_{CC} = 3.3$ V, $T_A = 25^{\circ}$ C.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated