SCAS320D - NOVEMBER 1993 - REVISED JUNE 1997

● Member of the Texas Instruments <i>Widebus</i> ™ Family	DGG OR DL PACKAGE (TOP VIEW)		
 EPIC[™] (Enhanced-Performance Implanted CMOS) Submicron Process 	10EAB [1 56] 10E 1CLKAB [2 55] 1CL		
 Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C 	1CEAB [] 3 54] 1CE GND [] 4 53] GND	BA	
 Typical V_{OHV} (Output V_{OH} Undershoot) > 2 V at V_{CC} = 3.3 V, T_A = 25°C 	1A1 []5 52 [] 1B1 1A2 []6 51 [] 1B2		
 Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V_{CC}) 	V _{CC} []7 50] V _{CC} 1A3 []8 49] 1B3 1A4 []9 48] 1B4		
 Power Off Disables Inputs/Outputs, Permitting Live Insertion 	1A5 []10 47 [] 1B5 GND []11 46] GNE) D	
 ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0) 	1A6 [] 12 45 [] 1B6 1A7 [] 13 44 [] 1B7 1A8 [] 14 43 [] 1B8		
 Latch-Up Performance Exceeds 250 mA Per JESD 17 	2A1 0 15 42 2B1 2A2 0 16 41 2B2 2A3 0 17 40 2B3		
 Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors 	GND [] 18 39] GNI 2A4 [] 19 38] 2B4 2A5 [] 20 37 [] 2B5	D	
 Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink 	2A5 [20 37] 2B5 2A6 [21 36] 2B6 V _{CC} [22 35] V _{CC}	;	
Small-Outline (DGG) Packages	2A7 [23 34] 2B7 2A8 [24 33] 2B8		
description	GND 25 32 GNE		
This 16-bit registered transceiver is designed for 2.7-V to 3.6-V V_{CC} operation.	2CEAB [26 31] 2CE 2CLKAB [27 30] 2CL 2OEAB [28 29] 2OE	KBA	
The SN7/LVCH16052A contains two sets of			

The SN74LVCH16952A contains two sets of D-type flip-flops for temporary storage of data flowing in either direction. It can be used as two 8-bit transceivers or one 16-bit transceiver. Data on the A or B bus is stored in the registers on the low-to-high transition of the clock (CLKAB or CLKBA) input, provided that the clock-enable (CEAB or CEBA) input is low. Taking the output-enable (OEAB or OEBA) input low accesses the data on either port.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74LVCH16952A is characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1997, Texas Instruments Incorporated

SN74LVCH16952A 16-BIT REGISTERED TRANSCEIVER WITH 3-STATE OUTPUTS SCAS320D - NOVEMBER 1993 - REVISED JUNE 1997

FUNCTION TABLE[†]

	INPUTS							
CEAB	CLKAB	OEAB	Α	В				
н	Х	L	Х	в ₀ ‡				
х	L	L	Х	в ₀ ‡ в ₀ ‡				
L	\uparrow	L	L	L				
L	\uparrow	L	Н	н				
Х	Х	Н	Х	Z				

[†] A-to-B data flow is shown; B-to-A data flow is similar, but uses CEBA, CLKBA, and OEBA.

[‡]Level of B before the indicated steady-state input conditions were established

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SCAS320D - NOVEMBER 1993 - REVISED JUNE 1997

logic diagram (positive logic)

To Seven Other Channels

SCAS320D - NOVEMBER 1993 - REVISED JUNE 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC}	V
Voltage range applied to any output in the high-impedance or power-off state, V _O (see Note 1)0.5 V to 6.5 V	/
Voltage range applied to any output in the high or low state, VO	
(see Notes 1 and 2)0.5 V to V _{CC} + 0.5 V	/
Input clamp current, I _{IK} (V _I < 0)	٩
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$) ±50 mA	٩
Continuous output current, I _O (V _O = 0 to V _{CC}) (see Note 2) ±50 mA	4
Continuous current through V _{CC} or GND	4
Package thermal impedance, θ_{JA} (see Note 3): DGG package	V
DL package	V
Storage temperature range, T _{stg} 65°C to 150°C	2

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The value of V_{CC} is provided in the recommended operating conditions table.

3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
Vaa	Supply voltage	Operating	2	3.6	V
Vcc	ouppiy voldgo	Data retention only	1.5		v
VIH	High-level input voltage	V_{CC} = 2.7 V to 3.6 V	2		V
VIL	Low-level input voltage	V_{CC} = 2.7 V to 3.6 V		0.8	V
VI	Input voltage		0	5.5	V
Ve	Output voltage	High or low state	0	VCC	V
VO		3 state	0	5.5	v
	High-level output current	$V_{CC} = 2.7 V$	-12		mA
ЮН	nigh-level output current	V _{CC} = 3 V		-24	IIIA
		$V_{CC} = 2.7 V$		12	mA
IOL	Low-level output current	V _{CC} = 3 V		24	
$\Delta t / \Delta v$	Input transition rise or fall rate		0	10	ns/V
TA	Operating free-air temperature		-40	85	°C

NOTE 4: Unused inputs must be held high or low to prevent them from floating.

SCAS320D - NOVEMBER 1993 - REVISED JUNE 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PA	RAMETER	TEST C	ONDITIONS	V _{CC}	MIN	TYP†	MAX	UNIT	
		I _{OH} = -100 μA		2.7 V to 3.6 V	V _{CC} -0.2				
				2.7 V	2.2			v	
VOH		I _{OH} = -12 mA		3 V	2.4			v	
		I _{OH} = -24 mA		3 V	2.2				
		I _{OL} = 100 μA		2.7 V to 3.6 V			0.2		
VOL		I _{OL} = 12 mA I _{OL} = 24 mA		2.7 V			0.4	V	
				3 V			0.55		
lj –	Control inputs	V _I = 0 to 5.5 V		3.6 V			±5	μA	
		V _I = 0.8 V		3 V	75				
ll(hold)	A or B ports	V _I = 2 V		3 V	-75	-75		μA	
		V ₁ = 0 to 3.6 V [‡]		3.6 V			±500		
l _{off}	-	V _I or V _O = 5.5 V		0			±10	μΑ	
Ioz§		V _O = 0 to 5.5 V		3.6 V			±10	μA	
lcc		V _I = V _{CC} or GND		0.01/			20		
		3.6 V ≤ V _I ≤ 5.5 V¶	IO = 0	3.6 V	20		20	μA	
∆lcc		One input at V _{CC} – 0.6 V,	Other inputs at V _{CC} or GND	3 V to 3.6 V			500	μΑ	
Ci	Control inputs	$V_{I} = V_{CC}$ or GND		3.3 V		5		pF	
Cio	A or B ports	$V_{O} = V_{CC}$ or GND		3.3 V		8.5		pF	

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡]This is the bus-hold maximum dynamic current required to switch the input from one state to another.

§ For I/O ports, the parameter IOZ includes the input leakage current, but not II(hold).

This applies in the disabled state only.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

			V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 2.7 V		UNIT
			MIN	MAX	MIN	MAX	
fclock	Clock frequency		0	150	0	150	MHz
tw	Pulse duration, CLK high or low		3.3		3.3		ns
	Sotup time	Data before CLK↑ 2.8			3.4		20
t _{su}	Setup time	CE before CLK↑	1.4		1.8		ns
+.	ty Hold time	Data after CLK↑	0.5		0.5		
ĥ		CE after CLK1	1.9		1.1		ns

SN74LVCH16952A **16-BIT REGISTERED TRANSCEIVER** WITH 3-STATE OUTPUTS SCAS320D – NOVEMBER 1993 – REVISED JUNE 1997

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 2.7 V		UNIT
		(001F01)	MIN	MAX	MIN	MAX	
fmax			150		150		MHz
^t pd	CLKAB or CLKBA	B or A	1.6	6.6		7.6	ns
ten	OE	A or B	1.1	6.6		8	ns
^t dis	OE	A or B	1.9	6.7		7.1	ns
t _{sk(o)} †				1			ns

[†] Skew between any two outputs of the same package switching in the same direction. This parameter is warranted but not production tested.

operating characteristics, V_{CC} = 3.3 V, T_A = 25°C

PARAMETER		TEST CONDITIONS		TYP	UNIT
C _{nd} Power dissipation capacitance per transceiver	Outputs enabled	C. 0 £ 10 MU		87	~ F
	Outputs disabled	$C_{L} = 0, f = 10$	f = 10 MHz	43	р⊦

SCAS320D - NOVEMBER 1993 - REVISED JUNE 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω, t_f ≤ 2.5 ns. t_f ≤ 2.5 ns.

- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PZL} and t_{PZH} are the same as t_{en} .

F. tpLz and tpHz are the same as t_{dis} .

G. t_{PLH} and t_{PHL} are the same as t_{pd} .

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated