SCAS281D – JANUARY 1993 – REVISED JANUARY 1997

- EPIC ™ (Enhanced-Performance Implanted CMOS) Submicron Process
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JEDEC Standard JESD-17
- Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 > 2 V at V_{CC} = 3.3 V, T_A = 25°C
- Inputs Accept Voltages to 5.5 V
- Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages

description

logic symbol[†]

This hex inverter contains six independent inverters designed for 2.7-V to 3.6-V V_{CC} operation. The SN74LVC04A performs the Boolean function $Y = \overline{A}$.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

The SN74LVC04A is characterized for operation from -40°C to 85°C.

INPUT A	OUTPUT Y
Н	L
L	н

FUNCTION TABLE (each inverter)

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

6A

13

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

D, DB, OR PW PACKAGE (TOP VIEW)					
_		∇		L	
1A 🛛	1	Ŭ	14		V _{CC}
1Y [2		13		6A
2A [3		12		6Y
2Y [4		11		5A
3A [5		10		5Y
3Y [6		9		4A
GND [7		8		4Y

(

2

4

6

10

12

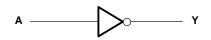
1Y

2Y

-8 3Y

4Y

5Y


6Y

Copyright © 1997, Texas Instruments Incorporated

1

SCAS281D - JANUARY 1993 - REVISED JANUARY 1997

logic diagram, each inverter (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}		–0.5 V to 6.5 V
Input voltage range, V _I (see Note 1)		–0.5 V to 6.5 V
Output voltage range, V _O (see Notes 1 and 2)		–0.5 V to V _{CC} + 0.5 V
Input clamp current, IIK (VI < 0)		
Output clamp current, I_{OK} (V _O < 0 or V _O > V _{CO}	с)	±50 mA
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$		±50 mA
Continuous current through V _{CC} or GND		
Package thermal impedance, θ_{JA} (see Note 3):		
	DB package	158°C/W
	PW package	170°C/W
Storage temperature range, T _{stg}	· · · ·	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The value of V_{CC} is provided in the recommended operating conditions table.

3. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT	
Vaa	Operating	Operating	2	3.6	V	
Vcc	Supply voltage	Data retention only	1.5		v	
VIH	High-level input voltage	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2		V	
VIL	Low-level input voltage	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8	V	
VI	Input voltage		0	5.5	V	
VO	Output voltage		0	VCC	V	
lau	High-level output current	$V_{CC} = 2.7 V$		-12	mA	
ЮН	rightever output current	V _{CC} = 3 V		-24	4	
	Low-level output current	$V_{CC} = 2.7 V$	2.7 V 12 mA		mA	
IOL		V _{CC} = 3 V		24	ШA	
Τ _Α	Operating free-air temperature		-40	85	°C	

NOTE 4: Unused inputs must be held high or low to prevent them from floating.

SCAS281D - JANUARY 1993 - REVISED JANUARY 1997

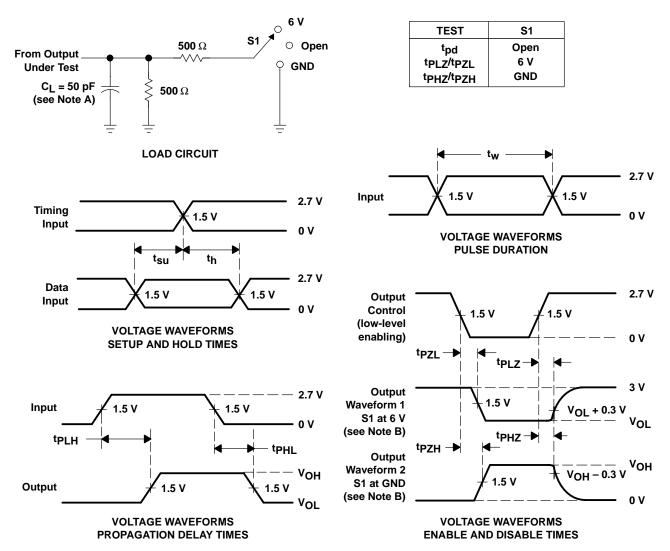
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	v _{cc} †	MIN	түр†	MAX	UNIT	
	I _{OH} = -100 μA	2.7 V to 3.6 V	V _{CC} -0.2				
Maria	1	2.7 V	2.2			V	
∨он	$I_{OH} = -12 \text{ mA}$	3 V	2.4			v	
	$I_{OH} = -24 \text{ mA}$	3 V	2.2				
	I _{OL} = 100 μA	2.7 V to 3.6 V			0.2		
V _{OL}	I _{OL} = 12 mA	2.7 V			0.4	V	
	I _{OL} = 24 mA	3 V			0.55		
lj	$V_{I} = 5.5 V \text{ or GND}$	3.6 V			±5	μA	
ICC	$V_{I} = V_{CC} \text{ or GND}, \qquad I_{O} = 0$	3.6 V			10	μA	
∆ICC	One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND	2.7 V to 3.6 V			500	μA	
Ci	$V_I = V_{CC}$ or GND	3.3 V		5		pF	

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

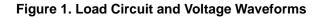
switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	= V _{CC} ± 0.3	3.3 V 3 V	V _{CC} =	2.7 V	UNIT
		MIN	MAX	MIN	MAX		
^t pd	А	Y	1	4.5		5.5	ns
^t sk(o) [‡]				1			ns


[‡]Skew between any two outputs of the same package switching in the same direction. This parameter is warranted but not production tested.

operating characteristics, V_{CC} = 3.3 V, T_A = 25°C

	PARAMETER TEST CONDITIONS		TYP	UNIT		
С	pd	Power dissipation capacitance per inverter	C _L = 50 pF,	f = 10 MHz	8	pF


SCAS281D - JANUARY 1993 - REVISED JANUARY 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CI includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω, t_f ≤ 2.5 ns, t_f ≤ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. tpLH and tpHL are the same as t_{pd} .

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated