SN74ALVC162820 3.3-V 10-BIT FLIP-FLOP WITH DUAL OUTPUTS AND SERIES-DAMPING RESISTORS AND 3-STATE OUTPUTS SCAS278 - OCTOBER 1993 - REVISED MARCH 1994

 EPIC ™ (Enhanced-Performance Implanted CMOS) Submicron Process 	DGG OR DL PACKAGE (TOP VIEW)
 Member of the Texas Instruments Widebus[™] Family 	10E 1 56 CLK
 Supports Unregulated Battery Operation Down to 2.7 V 	1Q102 55001 1Q203 540NC GND04 5300ND
 Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C 	2Q1 [5 52] D2 2Q2 [6 51] NC
 Typical V_{OHV} (Output V_{CC} Overshoot) > 2 V at V_{CC} = 3.3 V, T_A = 25°C 	V _{CC} [] 7 50] V _{CC} 3Q1 [] 8 49 [] D3
 ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 	3Q2 9 48 NC 4Q1 10 47 D4
200 V Using Machine Model (C = 200 pF, R = 0)	GND 11 46 GND 4Q2 12 45 NC 5Q1 13 44 D5
 Output Ports Have Equivalent 26-Ω Series Resistors, So No External Resistors Are Required. 	5Q2 14 43 NC 6Q1 15 42 D6
 Bus-Hold On Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors 	6Q2 16 41 NC 7Q1 17 40 D7 GND 18 39 GND
 Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17 	7Q2 19 38 NC 8Q1 20 37 D8 8Q2 21 36 NC
 Packaged in Plastic Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages 	V _{CC} 22 35 V _{CC} 9Q1 23 34 D9 9Q2 24 33 NC
description	GND 25 32 GND 10Q1 26 31 D10
This 10-bit flip-flop is designed specifically for low-voltage (3.3-V) V_{CC} operation	10Q2 [] 27 30] NC 2OE [] 28 29] NC

The flip-flops of the SN74ALVC162820 are edge-triggered D-type flip-flops. On the positive transition of the clock (CLK) input, the device provides true data at the Q outputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

The output-enable $\overline{(OE)}$ input does not affect the internal operations of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The outputs, which are designed to sink up to 12 mA, include 26- Ω resistors to reduce overshoot and undershoot.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74ALVC162820 is available in TI's shrink small-outline (DL) and thin shrink small-outline (DGG) packages, which provide twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN74ALVC162820 is characterized for operation from -40°C to 85°C.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

SN74ALVC162820 3.3-V 10-BIT FLIP-FLOP WITH DUAL OUTPUTS AND SERIES-DAMPING RESISTORS AND 3-STATE OUTPUTS

SCAS278 - OCTOBER 1993 - REVISED MARCH 1994

FUNCTION TABLE (each flip-flop)			
INPUTS		OUTPUT	
OE	CLK	D	Q
L	\uparrow	Н	Н
L	\uparrow	L	L
L	L	Х	Q ₀
Н	Х	Х	Z

logic diagram (positive logic)

To Nine Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} Input voltage range, V_I (except I/O ports) (see Note 1)	$\begin{array}{c} \text{-0.5 V to V}_{CC} + 0.5 \text{ V} \\$
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air): DGG package	1 W
DL package	
Storage temperature range	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

SN74ALVC162820 3.3-V 10-BIT FLIP-FLOP WITH DUAL OUTPUTS AND SERIES-DAMPING RESISTORS AND 3-STATE OUTPUTS

SCAS278 - OCTOBER 1993 - REVISED MARCH 1994

recommended operating conditions

			MIN	MAX	UNIT	
VCC	Supply voltage			3.6	V	
VIH	High-level input voltage	$V_{CC} = 2.7 V \text{ to } 3.6 V$	2		V	
VIL	Low-level input voltage	V _{CC} = 2.7 V to 3.6 V		0.8	V	
VI	Input voltage		0	VCC	V	
VO	Output voltage			VCC	V	
IOH High-le	Lick level output ourrest	$V_{CC} = 2.7 V$		-8		
	High-level output current	$V_{CC} = 3 V$		-12†	mA	
IOL	Low-level output current	V _{CC} = 2.7 V		8	~^^	
		$V_{CC} = 3 V$		12†	mA	
$\Delta t/\Delta v$	Input transition rise or fall rate		0	10	ns/V	
TA	Operating free-air temperature		-40	85	°C	
t o						

[†] Current duty cycle \leq 50%, f \geq 1 kHz

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	v _{cc} ‡	MIN	TYP	MAX	UNIT
VIK	l _l = –18 mA	2.7 V			-1.2	V
VOH	l _{OH} = -100 μA	MIN to MAX	V _{CC} -0.2	2		
	$I_{OH} = -8 \text{ mA}$	2.7 V	2			V
	I _{OH} = -12 mA	3 V	2			
	l _{OL} = 100 μA	MIN to MAX			0.2	
VOL	$I_{OL} = 8 \text{ mA}$	2.7 V			0.8	V
	I _{OL} = 12 mA	3 V			0.8	
l	$V_{I} = V_{CC} \text{ or } GND$	3.6 V			±5	μA
	V _I = 0.8 V	3 V	75			μA
l(hold)	V _I = 2 V	3 V	-75			μA
I _{OZ}	$V_{O} = V_{CC}$ or GND	3.6 V			±10	μA
ICC	$V_{I} = V_{CC} \text{ or GND}, \qquad I_{O} = 0$	3.6 V			40	μA
∆ICC	V_{CC} = 3 V to 3.6 V, One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND				750	μΑ
Ci	$V_I = V_{CC} \text{ or } GND$	3.3 V				pF
Co	$V_{O} = V_{CC} \text{ or } GND$	3.3 V				pF

[‡] For conditions shown as MIN or MAX, use the appropriate values under recommended operating conditions.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated