SCAS276 – NOVEMBER 1993 – REVISED MARCH 1994

	SCAS276 - NOVEMBER 1993 - REVISED MA				
 Member of the Texas Instruments Widebus+™ Family 		DL PACKAGE ? VIEW)			
 EPIC ™ (Enhanced-Performance Implanted CMOS) Submicron Process 	1CLKENAB	64] 1CLKENBA			
 UBT™ (Universal Bus Transceiver) Combines D Type Latebas and D Type 		62 CLKBA			
Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent,	1ERRA	61 1ERRB			
Latched, or Clocked Mode	1APAR [5 GND [6	60] 1BPAR 59] GND			
• Simultaneously Generates and Checks		58] 1B1			
Parity	1A2 🛛 8	57] 1B2			
 Option to Select Generate Parity and Check 	1A3 🛛 9				
or Feed-Through Data/Parity in A-to-B or B-to-A Directions					
 Distributed V_{CC} and GND Pin Configuration 	1A4 [] 11 1A5 [] 12				
Minimizes High-Speed Switching Noise	1A6 [] 13	E			
 Latch-Up Performance Exceeds 500 mA 	GND 14				
 Bus-Hold on Data Inputs Eliminates the 	1A7 [] 15	F			
Need for External Pullup/Pulldown	1A8 0 16 2A1 0 17	6			
Resistors	2A1 017 2A2 018	F			
Package Options Include Plastic 300-mil Shrink Small Outline (DL) and Thin Shrink	GND 🛛 19	46 GND			
Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages	2A3 20	· E			
	2A4 21 2A5 22	44 2B4 43 2B5			
description	V _{CC} 23	E			
This 18-bit (dual-octal) noninverting registered	2A6 24				
transceiver is designed for 2.7-V to 3.6-V V _{CC}	2A7 🛛 25	40 2 B7			
operation.		39 2B8			
The 'ALVC16901 is a dual 9-bit to dual 9-bit parity	GND 27 2APAR 28	38 GND 37 28PAR			
transceiver with registers. The device can operate	2ERRA 29	36 2ERRB			
as a feed-through transceiver or it can generate/ check parity from the two 8-bit data buses in either		35 OEBA			
direction.		34 ODD/EVEN			
The (AL)(C16001 feetures independent clock	2CLKENAB	33 2CLKENBA			

The 'ALVC16901 features independent clock (CLKAB or CLKBA), latch-enable (LEAB or LEBA), and dual 9-bit clock-enable (CLKENAB or

CLKENBA) inputs. It also provides parity-enable (SEL) and parity-select (ODD/EVEN) inputs and separate error-signal (ERRA or ERRB) outputs for checking parity. The direction of data flow is controlled by OEAB and OEBA. When SEL is low, the parity functions are enabled. When SEL is high, the parity functions are disabled and the device acts as an 18-bit registered transceiver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74ALVC16901 is available in TI's shrink small-outline (DL) and thin shrink small-outline (DGG) packages, which provide twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN74ALVC16901 is characterized for operation from -40° C to 85° C.

Widebus+, EPIC, and UBT are trademarks of Texas Instruments Incorporated.

SCAS276 - NOVEMBER 1993 - REVISED MARCH 1994

block diagram

FUNCTION TABLE [†]								
	INPUTS							
CLKENAB	LKENAB OEAB LEAB CLKAB A							
Х	Н	Х	Х	Х	Z			
Х	L	Н	Х	L	L			
Х	L	Н	Х	н	н			
н	L	L	Х	Х	в ₀ ‡			
L	L	L	\uparrow	L	L			
L	L	L	\uparrow	н	н			
L	L	L	L	Х	в ₀ ‡			
L	L	L	Н	Х	в ₀ ∓ в ₀ §			

[†] A-to-B data flow is shown: B-to-A flow is similar but uses OEBA, LEBA, and CLKENBA.

[‡] Output level before the indicated steady-state input conditions were established.

§ Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low.

SN74ALVC16901 18-BIT UNIVERSAL BUS TRANSCEIVER WITH PARITY GENERATORS/CHECKERS SCAS276 – NOVEMBER 1993 – REVISED MARCH 1994

	INPUTS		OPERATION (
SEL	OEBA	OEAB	OPERATION	JR FUNCTION				
L	Н	L	Parity is checked on port A ar	Parity is checked on port A and is generated on port B				
L	L	Н	Parity is checked on port B ar	Parity is checked on port B and is generated on port A				
L	Н	н	Parity is checked on port B and port A					
L	L	L	Parity is generated on port A and B if device is in FF mod					
н	L	L	Parity functions are	Q _A data to B, Q _B data to A				
н	L	Н	disabled, device acts as a	Q _B data to A				
н	Н	L		Q _A data to B				
н	Н	Н	transceiver	Isolation				

PARITY-ENABLE FUNCTION TABLE

PARITY FUNCTION TABLE

INPUTS					OUTPUTS						
SEL	OEBA	OEAB	ODD/EVEN	Σ OF INPUTS A1-A8 = H	$\Sigma \text{ OF INPUTS}$ B1-B8 = H	APAR	BPAR	APAR	ERRA	BPAR	ERRB
L	Н	L	L	0, 2, 4, 6, 8	N/A	L	N/A	N/A	Н	L	Z
L	Н	L	L	1, 3, 5, 7	N/A	L	N/A	N/A	L	Н	Z
L	Н	L	L	0, 2, 4, 6, 8	N/A	Н	N/A	N/A	L	L	Z
L	Н	L	L	1, 3, 5, 7	N/A	Н	N/A	N/A	Н	Н	Z
L	L	Н	L	N/A	0, 2, 4, 6, 8	N/A	L	L	Z	N/A	Н
L	L	Н	L	N/A	1, 3, 5, 7	N/A	L	н	Z	N/A	L
L	L	Н	L	N/A	0, 2, 4, 6, 8	N/A	н	L	Z	N/A	L
L	L	Н	L	N/A	1, 3, 5, 7	N/A	Н	н	Z	N/A	Н
L	Н	L	Н	0, 2, 4, 6, 8	N/A	L	N/A	N/A	L	Н	Z
L	н	L	Н	1, 3, 5, 7	N/A	L	N/A	N/A	н	L	Z
L	н	L	Н	0, 2, 4, 6, 8	N/A	н	N/A	N/A	н	н	Z
L	н	L	Н	1, 3, 5, 7	N/A	н	N/A	N/A	L	L	Z
L	L	Н	Н	N/A	0, 2, 4, 6, 8	N/A	L	н	Z	N/A	L
L	L	Н	н	N/A	1, 3, 5, 7	N/A	L	L	Z	N/A	н
L	L	Н	н	N/A	0, 2, 4, 6, 8	N/A	н	н	Z	N/A	н
L	L	Н	Н	N/A	1, 3, 5, 7	N/A	н	L	Z	N/A	L
L	Н	Н	L	0, 2, 4, 6, 8	0, 2, 4, 6, 8	L	L	Z	Н	Z	Н
L	н	Н	L	1, 3, 5, 7	1, 3, 5, 7	L	L	z	L	Z	L
L	н	н	L	0, 2, 4, 6, 8	0, 2, 4, 6, 8	н	н	z	L	Z	L
L	н	н	L	1, 3, 5, 7	1, 3, 5, 7	н	н	z	н	Z	н
L	Н	Н	Н	0, 2, 4, 6, 8	0, 2, 4, 6, 8	L	L	Z	L	Z	L
L	Н	Н	Н	1, 3, 5, 7	1, 3, 5, 7	L	L	z	н	Z	н
L	Н	Н	Н	0, 2, 4, 6, 8	0, 2, 4, 6, 8	н	н	z	н	Z	н
L	Н	Н	Н	1, 3, 5, 7	1, 3, 5, 7	н	н	z	L	Z	L
L	L	L	L	N/A	N/A	N/A	N/A	PE†	Z	PE†	Z
L	L	L	Н	N/A	N/A	N/A	N/A	PO‡	Z	PO‡	Z

[†] Parity output is set to the level so that the specific bus side is set to even parity.

[‡] Parity output is set to the level so that the specific bus side is set to odd parity.

SCAS276 - NOVEMBER 1993 - REVISED MARCH 1994

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} Input voltage range, V_I (except I/O ports) (see Note 1) Input voltage range, V_I (l/O ports) (see Notes 1 and 2) Output voltage range, V_O (see Notes 1 and 2) Input clamp current, I_{IK} ($V_I < 0$) Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$) Continuous output current, I_O ($V_O = 0$ to V_{CC}) Continuous current through V_{CC} or GND pins Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air): DGG package DL package	$\begin{array}{cccc} & -0.5 \ V \ to \ 4.6 \ V \\ 0.5 \ V \ to \ V_{CC} \ + \ 0.5 \ V \\ 0.5 \ V \ to \ V_{CC} \ + \ 0.5 \ V \\ & & -50 \ \text{mA} \\ & & \pm 50 \ \text{mA} \\ & & & \pm 50 \ \text{mA} \\ & & & & \pm 100 \ \text{mA} \\ & & & & & 1 \ W \\ & & & & & & 1.4 \ W \end{array}$
Storage temperature range	−65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This value is limited to 4.6 V maximum.

recommended operating conditions

			MIN	MAX	UNIT
VCC	Supply voltage		2.7	3.6	V
VIH	High-level input voltage	V_{CC} = 2.7 V to 3.6 V	2		V
V_{IL}	Low-level input voltage	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8	V
VI	Input voltage		0	VCC	V
VO	Output voltage		0	VCC	V
lau	High-level output current	$V_{CC} = 2.7 V$		-12	mA
ЮН		$V_{CC} = 3 V$		-24	IIIA
	Low-level output current	$V_{CC} = 2.7 V$		12	mA
^I OL	V _{CC} = 3 V			24	IIIA
$\Delta t/\Delta v$	Input transition rise or fall rate		0	5	ns/V
Т _А	Operating free-air temperature		-40	85	°C

SCAS276 - NOVEMBER 1993 - REVISED MARCH 1994

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PA	RAMETER	TEST CONDITIONS	v _{cc} †	MIN	TYP	MAX	UNIT	
VIK		lj = -18 mA	2.7 V			-1.2	V	
		I _{OH} = -100 μA	MIN to MAX	V _{CC} -0.2				
		10	2.7 V	2.2			V	
VOH		$I_{OH} = -12 \text{ mA}$	3 V	2.4			v	
		$I_{OH} = -24 \text{ mA}$	3 V	2				
		I _{OL} = 100 μA	MIN to MAX			0.2		
VOL		I _{OL} = 12 mA	2.7 V			0.4	V	
		I _{OL} = 24 mA	3 V	0.5	0.55			
Ц	Control pins	$V_{I} = V_{CC}$ or GND	3.6 V			±5	μA	
4.4.1.5	Data I/Os	V _I = 0.8 V	3 V	75				
l(hold)	Dala 1/05	$V_{I} = 2 V$	- 3 V	-75			μA	
loz‡		$V_{O} = V_{CC}$ or GND	3.6 V			±10	μA	
ICC		$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	3.6 V			40	μA	
∆ICC		V_{CC} = 3 V to 3.6 V, One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND				750	μA	
Ci	Control inputs	$V_I = V_{CC}$ or GND	3.3 V				pF	
Cio	A or B ports	$V_{O} = V_{CC} \text{ or } GND$	3.3 V				pF	

[†] For conditions shown as MIN or MAX, use the appropriate values under recommended operating conditions.

 \ddagger For I/O ports, the parameter I_{OZ} includes the input leakage current.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated