74AC11374 OCTAL D-TYPE EDGE-TRIGGERED FLIP-FLOP WITH 3-STATE OUTPUTS

DB. DW. OR NT PACKAGE

SCAS214A - JULY 1987 - REVISED APRIL 1996

- Eight D-Type Flip-Flops in a Single Package
- 3-State Bus-Driving True Outputs
- Full Parallel Access for Loading
- Flow-Through Architecture Optimizes PCB Layout
- Center-Pin V_{CC} and GND Configurations Minimize High-Speed Switching Noise
- EPIC™ (Enhanced-Performance Implanted CMOS) 1-μm Process
- 500-mA Typical Latch-Up Immunity at 125°C
- Package Options Include Plastic Small-Outline (DW) and Shrink Small-Outline (DB) Packages, and Standard Plastic 300-mil DIPs (NT)

(TOP VIEW) 24 | OE 1Q[2Q∏ 23 1D 3Q**∏** 3 22 2D 4Q**∏** 4 21 **∏** 3D 20 1 4D GND 5 GND∏ 6 19 VCC GND∏ 7 18 V_{CC} GND 8 17 5D 5Q∏ 9 16**∏** 6D 6Q**∏** 10 15**∏** 7D 14 8D 7Q[] 11 12 8Q[13 | CLK

description

This 8-bit flip-flop features 3-state outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. It is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight flip-flops of the 74AC11374 are edge-triggered D-type flip-flops. On the positive transition of the clock, the Q outputs are set to the logic levels set up at the D inputs.

The output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance third state provides the capability to drive the bus lines in a bus-organized system without need for interface or pullup components.

OE does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The 74AC11374 is characterized for operation from –40°C to 85°C.

FUNCTION TABLE (each flip-flop)

	INPUTS	OUTPUT	
OE	CLK	D	Q
L	↑	Н	Н
L	\uparrow	L	L
L	L	Χ	Q_0
L	Н	Χ	Q ₀ Q ₀ Q ₀
L	\downarrow	Χ	
Н	X	Χ	Z

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

74AC11374 OCTAL D-TYPE EDGE-TRIGGERED FLIP-FLOP WITH 3-STATE OUTPUTS

SCAS214A - JULY 1987 - REVISED APRIL 1996

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I (see Note 1)	\dots -0.5 V to V _{CC} + 0.5 V
Output voltage range, VO (see Note 1)	0.5 V to V _{CC} + 0.5 V
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	±20 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	±50 mA
Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$	±50 mA
Continuous current through V _{CC} or GND	
Maximum power dissipation at $T_A = 55^{\circ}$ C (in still air) (see Note 2): DB package	age 0.65 W
DW pack	age
NT packa	age 1.3 W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils, except for the NT package, which has a trace length of zero.

recommended operating conditions

			MIN	NOM	MAX	UNIT
Vcc	Supply voltage		3	5	5.5	V
		V _{CC} = 3 V	2.1			
ViH	High-level input voltage	V _{CC} = 4.5 V	3.15			V
		$V_{CC} = 5.5 \text{ V}$	3.85			
		V _{CC} = 3 V			0.9	
VIL	Low-level input voltage	V _{CC} = 4.5 V			1.35	V
VIH VIL VI VO IOH		V _{CC} = 5.5 V			1.65	
٧ı	Input voltage		0		VCC	V
٧o	Output voltage		0		VCC	V
		V _{CC} = 3 V			-4	
ЮН	High-level output current	$V_{CC} = 4.5 \text{ V}$			-24	mA
		V _{CC} = 5.5 V		0.9 1.35 1.65 VCC VCC		
	Input voltage Output voltage V High-level output current V Low-level output current V	V _{CC} = 3 V			12	
lOL	Low-level output current	V _{CC} = 4.5 V			24	mA
		$V_{CC} = 5.5 \text{ V}$			24	
A+/A>-	Input transition rise or fall rate	Data	0		10	20/1/
ΔυΔν	Input transition rise or fall rate	ŌĒ	0		5	ns/V
T _A	Operating free-air temperature		-40		85	°C

74AC11374 OCTAL D-TYPE EDGE-TRIGGERED FLIP-FLOP WITH 3-STATE OUTPUTS

SCAS214A - JULY 1987 - REVISED APRIL 1996

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	T,	_A = 25°C		MINI	0.1 0.1 0.1 0.44 0.44 1.65 ±5 ±1 80	UNIT
PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	IVIIN		UNII
		3 V	2.9			2.9		
	I _{OH} = -50 μA	4.5 V	4.4	N TYP MAX				
		5.5 V	5.4			5.4		
Vон	I _{OH} = -4 mA	3 V	2.58			2.48	0.1 0.1 0.44 0.44 1.65 ±5 ±1	V
	1011 - 24 mA	NS VCC MIN TYP MAX MIN MAX UN						
	IOH = -24 IIIA	5.5 V	4.94			4.8		
	$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V				3.85		
					0.1		0.1	
$V_{OH} = -50 \mu\text{A} \qquad \qquad \begin{array}{c} 4.5 \text{V} & 4.4 \\ \hline 5.5 \text{V} & 5.4 \\ \hline \\ 1_{OH} = -4 \text{mA} & 3 \text{V} & 2.58 \\ \hline \\ 1_{OH} = -24 \text{mA} & 5.5 \text{V} & 3.94 \\ \hline \\ 1_{OH} = -75 \text{mA}^{\dagger} & 5.5 \text{V} \\ \hline \\ V_{OL} \qquad \begin{array}{c} I_{OL} = 50 \mu\text{A} & 4.5 \text{V} & 0.5 \\ \hline \\ 1_{OL} = 12 \text{mA} & 3 \text{V} & 0.3 \\ \hline \\ 1_{OL} = 24 \text{mA} & 3 \text{V} & 0.3 \\ \hline \\ 1_{OL} = 75 \text{mA}^{\dagger} & 5.5 \text{V} \\ \hline \\ 1_{OL} = 75 \text{mA}^{\dagger} & 5.5 \text{V} \\ \hline \\ 1_{OL} = 75 \text{mA}^{\dagger} & 5.5 \text{V} \\ \hline \\ 1_{OL} = 75 \text{mA}^{\dagger} & 5.5 \text{V} \\ \hline \\ 1_{OL} = 75 \text{mA}^{\dagger} & 5.5 \text{V} \\ \hline \\ 1_{OL} = 75 \text{C} \text{C}$	0.1		0.1	.				
		5.5 V			MAX 2.9 4.4 5.4 2.48 3.8 4.8 3.85 0.1 0.1 0.1 0.1 0.36 0.44 0.36 0.44 0.36 0.44 1.65 ±0.5 ±5 μ 8 80 μ ρ			
V _{OL}	I _{OL} = 12 mA	3 \ \ 2.9	V					
	lo. = 24 mA							
	IOL = 24 IIIA	5.5 V			0.36		0.44	
	$I_{OL} = 75 \text{ mA}^{\dagger}$	5.5 V					1.65	
loz	$V_O = V_{CC}$ or GND	5.5 V			±0.5		±5	μΑ
lį	$V_I = V_{CC}$ or GND	5.5 V			±0.1		±1	μΑ
lcc	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			8		80	μΑ
Ci	$V_I = V_{CC}$ or GND	5 V		4				pF
Co	$V_O = V_{CC}$ or GND	5 V		10				pF

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

			T _A =	: 25°C MIN		MAX	UNIT
			MIN	MAX	IVIIN	IVIAX	UNIT
fclock	Clock frequency		0	75	0	75	MHz
t _W	Pulse duration	CLK low or high	6.5		6.5		ns
t _{su}	Setup time, data before CLK↑		2.5		2.5		ns
th	Hold time, data after CLK↑		4.5		4.5		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

			T _A = 25°C		MIN	MAX	UNIT
			MIN MAX		IVIIIN	WAA	UNIT
fclock	Clock frequency		0	95	0	95	MHz
t _W	Pulse duration	CLK low or high	5		5		ns
t _{su}	Setup time, data before CLK↑		2.5		2.5		ns
t _h	Hold time, data after CLK↑		3.5		3.5		ns

74AC11374 OCTAL D-TYPE EDGE-TRIGGERED FLIP-FLOP WITH 3-STATE OUTPUTS SCAS214A – JULY 1987 – REVISED APRIL 1996

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	ТО	T _A = 25°C			MIN	MAX	UNIT
FARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	IVIIIV	IVIAA	ONIT
f _{max}			75	90		75		MHz
^t PLH	CLK	Any Q	1.5	9.5	12.5	1.5	14.2	nc
^t PHL			1.5	9	12.6	1.5	14	ns
^t PZH	ŌĒ	Any Q	1.5	8	10.9	1.5	12.3	20
^t PZL			1.5	8	11.1	1.5	12.3	ns
^t PHZ	ŌĒ	A O	1.5	10	12.1	1.5	12.5	20
t _{PLZ}	OE .	Any Q	1.5	8	10.7	1.5	11.6	ns

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	T _A = 25°C			MIN	MAN	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	IVIIIV	MAX	UNII
f _{max}			95	110		95		MHz
t _{PLH}	CLK	Any Q	1.5	6.5	9	1.5	10.2	ns
^t PHL			1.5	5.5	9.1	1.5	10.1	113
^t PZH	OE	Any Q	1.5	5.5	8	1.5	9.1	ns
t _{PZL}	OE		1.5	5.5	8.4	1.5	9.4	115
^t PHZ	ŌĒ	Anv. O	1.5	9	11	1.5	11.2	ns
t _{PLZ}]	Any Q	1.5	6	8.6	1.5	9.2	115

operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER			TEST CO	TYP	UNIT	
C _{pd}	Power dissipation capacitance per flip-flop	Outputs enabled	C 50 pE	f =1 MHz	75	pF
		Outputs disabled	$C_L = 50 pF$		66	

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

VOLTAGE WAVEFORMS

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

VOLTAGE WAVEFORMS

- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \ \Omega$, $t_f = 3 \ ns$, $t_f = 3 \ ns$.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated