74AC11590 8-BIT BINARY COUNTER WITH REGISTERED 3-STATE OUTPUTS SCAS194 – D3988, MARCH 1992 – REVISED APRIL 1993

 Parallel Registered Outputs Internal Counters Have Direct Clear 	DW OR N PACKAGE (TOP VIEW)
 Flow-Through Architecture Optimizes PCB Layout 	Q _B [1 20] Q _A Q _C [2 19] <u>ССК</u>
 Center-Pin V_{CC} and GND Configurations Minimize High-Speed Switching Noise 	Q _D [] 3 18] <u>CCKEN</u> GND [] 4 17] <u>CCLR</u>
 EPIC[™] (Enhanced-Performance Implanted CMOS) 1-µm Process 	GND [] 5 16 [] V _{CC} GND [] 6 15 [] <u>V_{CC}</u> GND [] 7 14 [] OE
 500-mA Typical Latch-Up Immunity at 125°C 	GND [] 7 14] OE Q _E [] 8 13] <u>RCK</u> Q _F [] 9 12 [] RCO
 Package Options Include Plastic Small-Outline Packages and Standard Plastic 300-mil DIPs 	$Q_{G} \begin{bmatrix} 10 & 11 \end{bmatrix} Q_{H}$

description

The 74AC11590 contains an 8-bit binary counter that feeds an 8-bit storage register. The storage register has parallel outputs. Separate clocks are provided for both the binary counter and storage register.

The binary counter features a direct clear (\overline{CCLR}) input and a count-enable (\overline{CCKEN}) input. For cascading, a ripple-carry (\overline{RCO}) output is provided. Expansion is easily accomplished for two stages by connecting \overline{RCO} of the first stage to \overline{CCKEN} of the second stage. Cascading for larger count chains can be accomplished by connecting \overline{RCO} of each stage to CCK of the following stage.

Both the register and the counter have individual positive-edge-triggered clocks. If both clocks are connected together, the counter state is always one count ahead of the register. Internal circuitry prevents clocking from the clock enable.

The 74AC11590 is characterized for operation from -40° C to 85° C.

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

EPIC is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1993, Texas Instruments Incorporated

SCAS194 – D3988, MARCH 1992 – REVISED APRIL 1993

logic diagram (positive logic)

74AC11590 8-BIT BINARY COUNTER WITH REGISTERED 3-STATE OUTPUTS SCAS194 – D3988, MARCH 1992 – REVISED APRIL 1993

SCAS194 - D3988, MARCH 1992 - REVISED APRIL 1993

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	
Input voltage range, V _I (see Note 1)	-0.5 V to V _{CC} + 0.5 V
Output voltage range, V _O (see Note 1)	-0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{CC})	±20 mA
Output clamp current, I_{OK} (V _O < 0 or V _O > V _{CC})	±50 mA
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	±50 mA
Continuous current through V _{CC} or GND	±225 mA
Storage temperature range	−65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 2)

			MIN	NOM	MAX	UNIT
VCC	Supply voltage		3	5	5.5	V
		$V_{CC} = 3 V$	2.1			
VIH	High-level input voltage	$V_{CC} = 4.5 V$	3.15			V
		V _{CC} = 5.5 V	3.85			
		$V_{CC} = 3 V$			0.9	
VIL	Low-level input voltage	$V_{CC} = 4.5 V$			1.35	V
		V _{CC} = 5.5 V			1.65	
VI	Input voltage		0		VCC	V
VO	Output voltage		0		VCC	V
		$V_{CC} = 3 V$			-4	
ЮН	High-level output current	$V_{CC} = 4.5 V$			-24	mA
		V _{CC} = 5.5 V			-24	
		$V_{CC} = 3 V$			12	
IOL	Low-level output current	$V_{CC} = 4.5 V$			24	mA
		V _{CC} = 5.5 V			24	
$\Delta t/\Delta v$	Input transition rise or fall rate		0		10	ns/V
TA	Operating free-air temperature		-40		85	°C

NOTE 2: Unused or floating inputs must be held high or low.

SCAS194 - D3988, MARCH 1992 - REVISED APRIL 1993

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	N	Т	A = 25°C	;	MIN	MAX	UNIT
	TEST CONDITIONS	Vcc	MIN	ТҮР	MAX	MIIN		UNIT
		3 V	2.9			2.9		
	I _{OH} = - 50 μA	4.5 V	4.4			4.4		
VOH		5.5 V	5.4			5.4		
	$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.48		V
	I _{OL} = – 24 mA	4.5 V	3.94			3.8		
		5.5 V	4.94			4.8		
	$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V				3.85		
	I _{OL} = 50 μA	3 V			0.1		0.1	
		4.5 V			0.1		0.1	
		5.5 V			0.1		0.1	
VOL	I _{OL} = 12 mA	3 V			0.36		0.44	V
	I _{OL} = 24 mA	4.5 V			0.36		0.44	
		5.5 V			0.36		0.44	1
	$I_{OL} = 75 \text{ mA}^{\dagger}$	5.5 V					1.65	
Ц	$V_I = V_{CC} \text{ or } GND$	5.5 V			±0.1		±1	μA
I _{OZ}	$V_{O} = V_{CC} \text{ or } GND$	5.5 V			±0.5		±5	μA
ICC	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	5.5 V			8		80	μA
Ci	$V_I = V_{CC}$ or GND	5 V		3				pF
Co	$V_{O} = V_{CC} \text{ or } GND$	5 V		11				pF

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

			T _A =	T _A = 25°C		МАХ	UNIT
			MIN MAX 0 50	MIN	MAX	UNIT	
fclock	Clock frequency, CCK or RCK		0	50	0	50	MHz
t _w	Pulse duration	CCK or RCK high or low	10		10		ns
		CCLR low	7.4		7.4		
		CCKEN low before CCK [↑]	5.2		5.2		
t _{SU} Setup	Setup time	CCLR high before CCK [↑]	3.4		3.4		ns
		CCK [↑] before RCK ^{↑‡}	8.1		8.1		
t _h	Hold time	CCKEN low after CCK [↑]	0		0		ns

[‡] This setup time ensures that the register will see stable data from the counter outputs. The clocks may be tied together, in which case the register will be one clock pulse behind the counter.

SCAS194 - D3988, MARCH 1992 - REVISED APRIL 1993

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

				T _A = 25°C		мах	UNIT
			MIN	MAX	MIN	IVIAA	UNIT
fclock	Clock frequency, CCK or RCK		0	80	0	80	MHz
t _w	Pulse duration	CCK or RCK high or low	6.3		6.3		ns
		CCLR low	4.9		4.9		
	Setup time	CCKEN low before CCK [↑]	3.7		3.7		
t _{su}		CCLR high before CCK [↑]	1.6		1.6		ns
		CCK [↑] before RCK ^{↑†}	5.5		5.5		
th	Hold time	CCKEN low after CCK↑	0.5		0.5		ns

[†] This setup time ensures that the register will see stable data from the counter outputs. The clocks may be tied together, in which case the register will be one clock pulse behind the counter.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	Т	₄ = 25°C	;	MIN	МАХ	UNIT
FARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX		WIAA	UNIT
fmax	CCK or RCK		50			50		MHz
^t PLH	ССК	RCO	7	13.5	15.9	7	18.3	ns
^t PHL	CCK	RCU	9	16.9	19.5	9	22.1	115
^t PLH	CCLR	RCO	6.2	12.4	14.8	6.2	17.1	ns
^t PLH	RCK	Q	7.3	13.7	16.2	7.3	18.7	ns
^t PHL	RCK	Q	7	13.6	15.9	7	17.9	115
^t PZH	OE	Q	7.8	15.5	18.5	7.8	21.1	
^t PZL	ÛE	Q	8.5	18.2	21.4	8.5	24.5	ns
^t PHZ		Q	6.3	10	11.9	6.3	13.2	
^t PLZ	OE	Q	6.8	10.8	12.8	6.8	14.1	ns
^t PLH	CCKEN	RCO	6	11.7	14	6	16.2	ns
^t PHL	COKEN	RCU	6	11.6	13.7	6	15.4	115

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	Т	₄ = 25°C	;	MIN	МАХ	UNIT
FARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	WIIIN	WIAA	UNIT
fmax	CCK or RCK		80			80		MHz
^t PLH	ССК	RCO	3.6	7.8	10.2	3.6	11.7	ns
^t PHL			4.7	9.8	12.7	4.7	14.4	115
^t PLH	CCLR	RCO	3.2	7.2	9.5	3.2	10.9	ns
^t PLH	RCK	0	3.7	8	10.4	3.7	12	
^t PHL		Q	3.6	8.2	10.7	3.6	12.1	ns
^t PZH	OE	Q	3.8	8.9	11.9	3.8	13.6	ns
^t PZL	UE	Q	3.7	9.5	12.6	3.7	14.3	115
^t PHZ	OF	Q	4.5	7.5	9.4	4.5	10.5	
^t PLZ	OE	Q	5.4	8.7	10.8	5.4	12	ns
^t PLH	CCKEN	RCO	3	6.9	9	3	10.4	
^t PHL	COKEN	KCU	2.9	7	9.2	2.9	10.4	ns

SCAS194 - D3988, MARCH 1992 - REVISED APRIL 1993

operating characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	TYP	UNIT	
C _{pd}	Power dissipation consolitance	Outputs enabled	$C_{1} = 50 \text{ pc}$ $f = 1 \text{ MHz}$	66	рF
	Power dissipation capacitance	Outputs disabled	$C_L = 50 \text{ pF}, \text{ f} = 1 \text{ MHz}$	43	

- NOTES: A. CL includes probe and jig capacitance.
 - B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r = 3 ns, t_f = 3 ns.
 - C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated