- Members of the Texas Instruments SCOPE[™] Family of Testability Products
- Compatible With the IEEE Standard 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
- Control Operation of Up to Six Parallel Target Scan Paths
- Accommodate Pipeline Delay to Target of Up to 31 Clock Cycles
- Scan Data Up to 2³² Clock Cycles

- Execute Instructions for Up to 2³² Clock Cycles
- Each Device Includes Four Bidirectional Event Pins for Additional Test Capability
- Inputs Are TTL-Voltage Compatible
- *EPIC*[™] (Enhanced-Performance Implanted CMOS) 1-μm Process
- Packaged in 44-Pin Plastic Leaded Chip Carrier (FN), 68-Pin Ceramic Pin Grid Array (GB), and 68-Pin Ceramic Quad Flat Packages (HV)

description

The 'ACT8990 test-bus controllers (TBC) are members of the Texas Instruments SCOPE[™] testability integrated-circuit family. This family of components supports IEEE Standard 1149.1-1990 (JTAG) boundary scan to facilitate testing of complex circuit-board assemblies. The 'ACT8990 differ from other SCOPE[™] integrated circuits. Their function is to control the JTAG serial-test bus rather than being target boundary-scannable devices.

The required signals of the JTAG serial-test bus – test clock (TCK), test mode select (TMS), test data input (TDI), and test data output (TDO) can be connected from the TBC to a target device without additional logic. This is done as a chain of IEEE Standard 1149.1-1990 boundary-scannable components that share the same serial-test bus. The TBC generates TMS and TDI signals for its target(s), receives TDO signals from its target(s), and buffers its test clock input (TCKI) to a test clock output (TCKO) for distribution to its target(s). The TMS, TDI, and TDO signals can be connected to a target directly or via a pipeline, with a retiming delay of up to 31 bits. Since the TBC can be configured to generate up to six separate TMS signals [TMS (5-0)], it can be used to control up to six target scan paths that are connected in parallel (i.e., sharing common TCK, TDI, and TDO signals).

While most operations of the TBC are synchronous to TCKI, a test-off (TOFF) input is provided for output control of the target interface, and a test-reset (TRST) input is provided for hardware/software reset of the TBC. In addition, four event [EVENT (3-0)] I/Os are provided for asynchronous communication to target device(s). Each event has its own event generation/detection logic, and detected events can be counted by two 16-bit counters.

The TBC operates under the control of a host microprocessor/microcontroller via the 5-bit address bus [ADRS (4–0)] and the 16-bit read/write data bus [DATA (15–0)]. Read (\overline{RD}) and write (\overline{WR}) strobes are implemented such that the critical host-interface timing is independent of the TCKI period. Any one of 24 registers can be addressed for read and/or write operations. In addition to control and status registers, the TBC contains two command registers, a read buffer, and a write buffer. Status of the TBC is transmitted to the host via ready (\overline{RDY}) and interrupt (\overline{INT}) outputs.

Major commands can be issued by the host to cause the TBC to generate the TMS sequences necessary to move the target(s) from any stable test-access-port (TAP) controller state to any other stable TAP state, to execute instructions in the Run-Test/Idle TAP state, or to scan instruction or test data through the target(s). A 32-bit counter can be preset to allow a predetermined number of execution or scan operations.

Serial data that appears at the selected TDI input (TDI1 or TDI0) is transferred into the read buffer, which can be read by the host to obtain up to 16 bits of the serial-data stream. Serial data that is transmitted from the TDO output is written by the host to the write buffer.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCOPE and EPIC are trademarks of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1997, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

description (continued)

The SN54ACT8990 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74ACT8990 is characterized for operation from 0°C to 70°C.

NC - No internal connection

SN54ACT8990, SN74ACT8990 TEST-BUS CONTROLLERS

IEEE STD 1149.1 (JTAG) TAP MASTERS WITH 16-BIT GENERIC HOST INTERFACES

T	ERMINAL		TERMINAL	Т	ERMINAL	Т	ERMINAL
NO.	NAME	NO.	NAME	NO.	NAME	NO.	NAME
A2	NC	B10	NC	F11	NC	K6	NC
A3	ADRS4	B11	NC	G1	DATA5	K7	VCC
A4	NC	C1	DATA2	G2	NC	K8	DATA15
A5	ADRS1	C2	DATA1	G10	NC	K9	TDI0
A6	ADRS0	C3	NC	G11	TMS1	K10	NC
A7	NC	C10	TMS4/EVENT2	H1	NC	K11	TCKI
A8	INT	C11	TMS5/EVENT3	H2	DATA6	L2	DATA9
A9	RD	D1	DATA4	H10	TDO	L3	NC
A10	TRST	D2	DATA3	H11	TMS0	L4	DATA12
B1	DATA0	D10	TMS3/EVENT1	J1	DATA8	L5	DATA13
B2	NC	D11	NC	J2	DATA7	L6	NC
B3	ADRS3	E1	NC	J10	тско	L7	DATA14
B4	ADRS2	E2	GND	J11	NC	L8	TOFF
B5	NC	E10	VCC	K1	NC	L9	TDI1
B6	NC	E11	TMS2/EVENT0	K2	NC	L10	NC
B7	GND	F1	VCC	K3	DATA10		
B8	RDY	F2	NC	K4	DATA11		
B9	WR	F10	GND	K5	NC		

Table 1. Terminal Assignments

NC - No internal connection

functional block diagram

[†] Inputs have internal pullup resistors.

SN54ACT8990, SN74ACT8990 TEST-BUS CONTROLLERS

IEEE STD 1149.1 (JTAG) TAP MASTERS WITH 16-BIT GENERIC HOST INTERFACES SCAS190E – JUNE 1990 – REVISED JANUARY 1997

Terminal Functions

TERMINAL NAME	I/O	DESCRIPTION
ADRS4-ADRS0	Ι	Address inputs. ADRS4 – ADRS0 form the 5-bit address bus that interfaces the TBC to its host. These inputs specify the TBC register to be read from or written to.
DATA15-DATA0	I/O	Data inputs and outputs. DATA15–DATA0 form the 16-bit bidirectional data bus that interfaces the TBC to its host. Data is read from or written to the TBC register using this data bus.
GND		Ground
INT	0	Interrupt. INT transmits an interrupt signal to the host. When the TBC requires service from the host, INT is asserted (low). INT will remain asserted (low) until the host has completed the required service.
NC		No connection
RD	Ι	Read strobe. RD is the active low output enable for the data bus. RD is used as the strobe for reading data from the selected TBC register.
RDY	0	Ready. $\overline{\text{RDY}}$ transmits a status signal to the host. When the TBC is ready to accept a read or write operation from the host, $\overline{\text{RDY}}$ is asserted (low). $\overline{\text{RDY}}$ is not asserted (high) when the TBC is in recovery from a read, write, command, or reset operation.
тскі	I	Test clock input. TCKI is the clock input for the TBC. Most operations of the TBC are synchronous to TCKI. When enabled, all target interface outputs change on the falling edge of TCKI. Sampling of target interface inputs are configured to occur on either the rising edge or falling edge of TCKI.
тско	0	Test clock output. TCKO distributes TCK to the target(s). The TCKO is configured to be disabled, constant zero, constant one, or to follow TCKI. When TCKO follows TCKI, it is delayed to match the delay of generating the TDO and TMS signals.
TDI1-TDI0	Ι	Test data inputs. The TDI1 – TDI0 serial inputs are used for shifting test data from the target(s). The TDI inputs can be directly connected to the TDO pin(s) of the target(s).
TDO	0	Test data output. TDO is used for shifting test data into the target(s). TDO can be directly connected to the TDI terminal(s) of the target(s).
TMS1-TMS0	0	Test mode select outputs. These parallel outputs transmit TMS signals to the target(s), which direct them through their TAP controller states. TMS1-TMS0 can be directly connected to the TMS terminals of the target(s).
TMS5-TMS2/ EVENT3-EVENT0	I/O	Test mode select outputs or event inputs/outputs. These I/Os can be configured for use as either TMS outputs or event inputs/outputs. As TMS outputs, they function similarly to TMS1–TMS0 above. As event I/Os, they can be used to receive/transmit interrupt signals to/from the target(s).
TOFF	I	Test-off input. TOFF is the active low output disable for all outputs and I/Os of the target interface (TCKO, TDO, TMS, TMS/EVENT).
TRST	I	Test-reset input. TRST is used to initiate hardware and software reset operations of the TBC. Hardware reset begins when TRST is asserted (low). Software reset begins when TRST is released (high) and proceeds synchronously to TCKI to completion in a predetermined number of cycles.
WR	I	Write input. \overline{WR} is the strobe for writing data to a TBC data register. Signals present at the data and address buses are captured on the rising edge of \overline{WR} .
V _{CC}		Supply voltage

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (see Note 1)	0.5 V to V _{CC}
Output voltage range, V _O (see Note 1)	0.5 V to V _{CC}
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	±20 mÅ
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	±20 mA
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	±25 mA
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 2): FN package	1.5W
Storage temperature range, T _{stg}	–65°C to 150°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 75 mils. For more information, refer to the Package Thermal Considerations application note in the ABT Advanced BiCMOS Technology Data Book, literature number SCBD002.

recommended operating conditions

		SN54ACT8990		SN74A	СТ8990	UNIT
		MIN	MAX	MIN	MAX	
VCC	Supply voltage	4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage	2		2		V
VIL	Low-level input voltage		0.8		0.8	V
VI	Input voltage	0	VCC	0	VCC	V
Vo	Output voltage	0	VCC	0	VCC	V
ЮН	High-level output current		-8		-8	mA
IOL	Low-level output current		8		8	mA
Т _А	Operating free-air temperature	-55	125	0	70	°C

SN54ACT8990, SN74ACT8990 **TEST-BUS CONTROLLERS**

IEEE STD 1149.1 (JTAG) TAP MASTERS WITH 16-BIT GENERIC HOST INTERFACES SCAS190E – JUNE 1990 – REVISED JANUARY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDITIONS		Т	A = 25°C	;	SN54A	CT8990	SN74ACT8990		
ŀ	PARAMETER			MIN	TYP†	MAX	MIN	MAX	MIN	MAX	UNIT
		V _{CC} = 4.5 V	I _{OH} = -20 μA	4.4			4.4		4.4		
Vон		VCC = 4.5 V	$I_{OH} = -8 \text{ mA}$	3.7			3.7		3.7		v
		V _{CC} = 5.5 V	l _{OH} = -20 μA	5.4			5.4		5.4) v
		VCC = 5.5 V	$I_{OH} = -8 \text{ mA}$	4.7			4.7		4.7		
Vei		V _{CC} = 4.5 V	I _{OL} = 20 μA			0.1		0.1		0.1	v
VOL		to 5.5 V	I _{OL} = 8 mA			0.5		0.5		0.5	
ADRS, RD, WR, TCKI		V _{CC} = 5.5 V,	$V_{I} = V_{CC} \text{ or } GND$			±1		±1		±1	μΑ
II.	TDI, TOFF,	V _{CC} = 5.5 V	$V_{I} = V_{CC}$			±1		±1		±1	
	TRST	VCC = 3.3 V	V _I = GND	-35	-70	-250	-35	-250	-35	-250	
. +	INT, RDY, TCKO, TDO, TMS	V _{CC} = 5.5 V,	$V_{O} = V_{CC}$ or GND			±10		±10		±10	μΑ
loz‡	DATA,		$V_{O} = V_{CC}$			±10		±10		±10	
	TMS/EVENT	V _{CC} = 5.5 V	$V_{O} = GND$	-35	-70	-250	-35	-250	-35	-250	
		$V_{CC} = 5.5 V,$ $I_{O} = 0,$	$V_{I} = V_{CC} \text{ or } GND$			450*		450		450	μΑ
ICC		V _{CC} = 5.5 V,	C _L = 50 pF		100	<u></u>					mA
		f _{clock} = 30 MH	z		100						IIIA
Ci		$V_{I} = V_{CC} \text{ or } G$	ND		5 [*]						pF
C _{io}		$V_{I} = V_{CC} \text{ or } G$	ND		9*						pF
Co		$V_{I} = V_{CC} \text{ or } G$	ND		8*						pF

* On products compliant to MIL-PRF-38535, this parameter does not apply.

[†] Typical values are at V_{CC} = 5 V.

[‡] For I/O ports, the parameter I_{OZ} includes the input leakage.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (see Figure 1)

			SN54A	CT8990	SN74A	СТ8990	UNIT
			MIN		MIN	MAX	
fclock	Clock frequency		0	30	0	30	MHz
		RD low [†]			5.5		ns
		WR low	5.5		5.5		
tw	Pulse duration	EVENT high or low	8		8		
		TCKI high or low	10.5		10.5		ns
		TRST low	6		AX MIN MAX 30 0 30 5.5 5.5 8 8		1
t _{su}		ADRS [†] before RD↑			6.5		ns
		ADRS before WR↑	6.5		6.5		
	Setup time	DATA before WR↑	6		6		ns
		EVENT before TCKI↑	6		5.5		
		EVENT before TCKI↓	5		5		
		TDI before TCKI↑	2		2		
		TDI before TCKI↓	2		2		1
		ADRS [†] after RD↑			5		ns
		ADRS after WR↑	5.5		5		
		DATA after WR↑	5.5		5.5		1
th	Hold time	EVENT after TCKI↑	5.5		5		1
		EVENT after TCKI↓	5		5		ns
		TDI after TCKI↑	4		2.5		1
		TDI after TCKI↓	4		2.5		1

[†] Applies only in the case where ADRS (4-0) = 10110 (read buffer).

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (see Figure 1)

PARAMETER	FROM	то	SN54A	СТ8990	SN74A			
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX		
f _{max}			30		30		MHz	
^t PLH		DATA	8	43	19.5	39.3		
^t PHL	ADRS	DATA	8	43	19.5	39.3	ns	
4	RD↑		5.3	17	5.3	13.8		
^t PLH	WR↑	RDY	2.5	16	2.5	13	ns	
^t PLH	-0.4		3.7	16	3.7	12.9		
^t PHL	TCKI↑	INT	5.5	15	5.5	13.1	ns	
^t PHL	TCKI↑	RDY	4.4	15	4.4	13.4	ns	
^t PLH	ТСКІ↑	ТСКО	3.3	17	3.3	14.1	ns	
^t PLH	TOKI	токо	2.3	19	2.3	15.9		
^t PHL	тскі↓	тско	3.6	17	3.6	15.6	ns	
^t PLH	TOKU	TDO	2.9	19	2.9	17.5	ns	
^t PHL	TCKI↓	TDO	5.2	20	5.2	17.9		
^t PLH	ТСКІ↓	тыс	3.1	19	3.1	17.5	ns	
^t PHL	ICKI	TMS	5.1	19	5.1	18.2		
^t PLH	тски	TCKI↓ TMS/EVENT	1.5	19	1.5	17.5	ns	
^t PHL	ICKI		3.5	20	3.5	18.9		
^t PZH	RD↓	DATA	3.8	21	3.8	17.6		
^t PZL	RD↓	DATA	6.8	28	6.8	22.6	ns	
		INT	4.9	19	4.9	15.3		
^t PZH	TCKI↑	RDY	3.6	19	3.6	15.3	ns	
^t PZH	TOK	70//0	4.1	23	4.1	19.2		
^t PZL	ТСКІ↓	тско	4.8	20	4.8	17.4	ns	
^t PZH	ТСКІ↓	TDO	4.3	22	4.3	19.5		
^t PZL	ICKI	TDO	5	20	5	17.7	ns	
^t PZH	TOK	TMO	4.6	23	4.6	19.9		
^t PZL	ТСКІ↓	TMS	5.1	20	5.1	18.5	ns	
^t PZH	ТСКІ↓	TMS/EVENT	2	21	2	18.8		
^t PZL	ICNI	TIVIS/EVENT	3.2	20	3.2	18.7	ns	
^t PZH		тско	4.6	16	4.6	12.2		
^t PZL	TOFF	TCKO	3.1	14	3.1	10.3	ns	
^t PZH		TDO	4.4	15	4.4	12.2		
^t PZL	TOFF↑	TDO	3.5	14	3.5	10.8	ns	
^t PZH	TOFF ↑	ТМО	3.1	16.2	3.1	14.7		
^t PZL	IOFFI	TMS	1.9	16.7	1.9	13.6	ns	

SN54ACT8990, SN74ACT8990 **TEST-BUS CONTROLLERS** IEEE STD 1149.1 (JTAG) TAP MASTERS WITH 16-BIT GENERIC HOST INTERFACES

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (continued) (see Figure 1)

	FROM	то	SN54A	СТ8990	SN74A	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	
^t PZH			2.3	15.3	2.3	13.8	
^t PZL	TOFF	TMS/EVENT	2.7	16.4	2.7	13.9	ns
^t PHZ	RD↑	DATA	3.8	18.4	3.8	15.4	
^t PLZ	RDT	DATA	4.1	17.1	4.1	14.8	ns
^t PHZ	ТСКІ↓	тско	6.7	20.4	6.7	19.8	
^t PLZ		TCKU	4.8	21.1	4.8	20.4	ns
^t PHZ	ТСКІ↓	TDO	5.1	21.7	5.1	21.3	
^t PLZ	TONI¥	100	5	20.7	5	20.3	ns
^t PHZ	ТСКІ↓	TMS	6.9	22.4	6.9	21.9	
^t PLZ		11013	4.6	20.6	4.6	20.1	ns
^t PHZ	тскі↑	TMS/EVENT	4.7	22.5	4.7	22.1	
^t PLZ		TIVIS/EVENT	2.8	20.5	2.8	20.1	ns
^t PHZ	TOFF↓	тско	5	15.6	5	15.4	ns
^t PLZ			4.4	15.5	4.4	15.3	
^t PHZ	TOFF↓	TDO	5.6	16.6	5.6	16.5	ns
^t PLZ	IOFF↓	100	4.6	15.4	4.6	15.4	115
^t PHZ	TOFF↓	TMS	4.8	19.1	4.8	17.1	ns
^t PLZ	IOFF↓	11013	4.4	17	4.4	15.8	
^t PHZ	TOFF↓	TMS/EVENT	4.5	18.8	4.5	17.3	
^t PLZ	IOFF↓	TIVIS/EVENT	2.4	17.1	2.4	16.2	ns
^t PHZ	TRST↓	DATA	5.7	23	5.7	20.8	ns
^t PLZ	18314	DAIA	4.2	20.3	4.2	20	113
^t PHZ	TRST↓	INT	6	19.6	8	19.5	ns
^t PLZ	14914		6.1	18	6.1	17.8	115
^t PHZ	TRST↓	RDY	6.5	18.8	6.5	18.7	nc
^t PLZ	IK2I↓	RUT	4.8	17.8	4.8	17.8	ns
^t PHZ	TRST↓	TMS/EVENT	6	21.1	6	21.1	ns
^t PLZ			4.2	20	4.2	19.9	115

SN54ACT8990, SN74ACT8990 TEST-BUS CONTROLLERS IEEE STD 1149.1 (JTAG) TAP MASTERS WITH 16-BIT GENERIC HOST INTERFACES

SCAS190E - JUNE 1990 - REVISED JANUARY 1997

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 3 ns, t_f \leq 3 ns. For testing pulse duration: t_f = t_f = 1 to 3 ns. Pulse polarity can be either high-to-low-to-high or low-to-high-to-low.
 - D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated