V_{CC} [] 22

2Q7 23

2Q8 224

GND 25

2Q9 26

20E 27

2CLR 28

35 🛛 V_{CC}

34 2D7

33 2D8

32 GND

31 2D9

30 2CLKEN 29 🛛 2CLK

SCAS160A - APRIL 1991 - REVISED APRIL 1996

 Members of the Texas Instruments Widebus™ Family Inputs Are TTL-Voltage Compatible 	74ACT16823.	. WD PACKAGE DL PACKAGE VIEW)
 Provide Extra Data Width Necessary for	1CLR 1	56] 1CLK
Wider Address/Data Paths or Buses With	1OE 2	55] 1CLKEN
Parity	1Q1 3	54] 1D1
 Flow-Through Architecture Optimizes PCB	GND 4	53 GND
Layout	1Q2 5	52 1D2
 Distributed V_{CC} and GND Pin Configuration	1Q3 [6	51] 1D3
Minimizes High-Speed Switching Noise	V _{CC} [7	50] V _{CC}
 EPIC[™] (Enhanced-Performance Implanted	1Q4 [8	49 1D4
CMOS) 1-µm Process	1Q5 [9	48 1D5
 Package Options Include Plastic 300-mil	1Q6 10	47 1D6
Shrink Small-Outline (DL) Packages Using	GND 11	46 GND
25-mil Center-to-Center Pin Spacings and	1Q7 12	45 1D7
380-mil Fine-Pitch Ceramic Flat (WD)	1Q8 🛛 13	44] 1D8
Packages Using 25-mil Center-to-Center	1Q9 🗖 14	43] 1D9
Pin Spacings	2Q1 [15 2Q2 [16	42 2D1 41 2D2
description	2Q3 [17 GND [18	40 2D3 39 GND
These 18-bit flip-flops feature 3-state outputs	2Q4 19	38 2D4
designed specifically for driving highly-capacitive	2Q5 20	37 2D5
or relatively low-impedance loads. They are	2Q6 21	36 2D6

particularly suitable for implementing wider buffer registers, I/O ports, parity bus interfacing, and working registers.

The 'ACT16823 can be used as two 9-bit flip-flops or one 18-bit flip-flop. With the clock-enable (CLKEN) input low, the D-type flip-flops enter data on the low-to-high transitions of the clock. Taking CLKEN high disables the clock buffer, thus latching the outputs. Taking the clear (CLR) input low causes the Q outputs to go low independently of the clock.

A buffered output-enable (OE) input can be used to place the outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly.

OE does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The 74ACT16823 is packaged in the TI shrink small-outline package, which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The 54ACT16823 is characterized for operation over the full military temperature range of 55°C to 125°C. The 74ACT16823 is characterized for operation from -40°C to 85°C

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

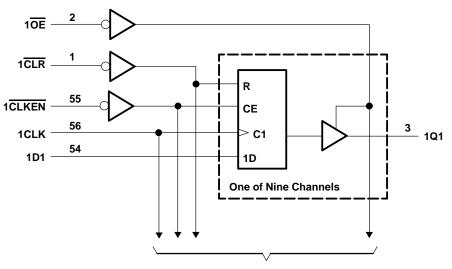
UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all narameters

Copyright © 1996, Texas Instruments Incorporated

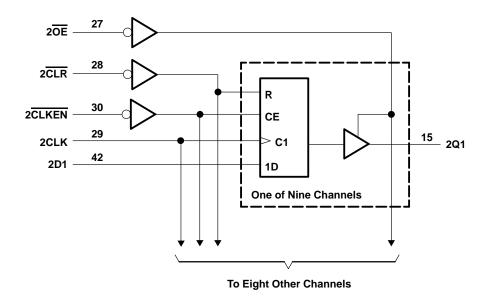
54ACT16823, 74ACT16823 18-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS SCAS160A – APRIL 1991 – REVISED APRIL 1996

FUNCTION TABLE (each 9-bit stage)

(04011 0 411 01430)									
	INPUTS								
OE	CLR	CLKEN	CLK	D	Q				
L	L	Х	Х	Х	L				
L	Н	L	\uparrow	Н	н				
L	Н	L	\uparrow	L	L				
L	Н	L	L	Х	Q ₀				
L	Н	Н	Х	Х	Q ₀				
Н	Х	Х	Х	Х	Z				


logic symbol[†]

	-	r	-	
1 <mark>0E</mark>	2	EN1		
1CLR	1	R2		
	55	G3		
1CLK	56	-> 3C4		
2 <u>0E</u>	27	EN5		
	28	R6		
2CLR	30			
2CLKEN	29	G7		
2CLK		-> 7C8		
1D1	54	4D 1, 2 \	7 3	1
1D2	52		5	1
1D3	51		6	1
1D4	49		8	1
1D5	48		9	1
1D6	47		10	1
1D7	45		12	1
1D7	44		13	1
1D8	43		- 14	
	42		15	1
2D1	41	- 8D 5,6 \	16	2
2D2	40		17	2
2D3	38		19	2
2D4	37		20	2
2D5	36	-	21	2
2D6	34	-	23	2
2D7	33	-	24	2
2D8	31		25	2
2D9		-		20


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Eight Other Channels

SCAS160A – APRIL 1991 – REVISED APRIL 1996

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	
Input voltage range, V _I (see Note 1)	-0.5 V to V _{CC} + 0.5 V
Output voltage range, V _O (see Note 1)	
Input clamp current, I_{IK} (V _I < 0 or V _I > V _{CC})	±20 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	±50 mA
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	±50 mA
Continuous current through V _{CC} or GND	±450 mA
Maximum package power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 2): DL package	e 1.4 W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.

recommended operating conditions (see Note 2)

		54ACT16823		74ACT16823			UNIT	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2		h	2			V
VIL	Low-level input voltage		VI.	0.8			0.8	V
VI	Input voltage	0	RE	VCC	0		VCC	V
Vo	Output voltage	0	7	VCC	0		VCC	V
ЮН	High-level output current		50	-24			-24	mA
IOL	Low-level output current	201	5	24			24	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	0		10	0		10	ns/V
TA	Operating free-air temperature	-55		125	-40		85	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

SCAS160A - APRIL 1991 - REVISED APRIL 1996

	TEST CONDITIONS	V	T _A = 25°C			54ACT16823		74ACT16823		UNIT
PARAMETER		Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
	I _{OH} = -50 μA	4.5 V	4.4			4.4		4.4		
		5.5 V	5.4			5.4		5.4		
VOH	lou - 24 mA	4.5 V	3.94			3.8		3.8		V
	$I_{OH} = -24 \text{ mA}$	5.5 V	4.94			4.8		4.8		
	I _{OH} = –75 mA [†]	5.5 V				3.85		3.85		
	I _{OL} = 50 μA	4.5 V			0.1		0.1		0.1	
		5.5 V			0.1		0,1		0.1	
VOL	I _{OL} = 24 mA	4.5 V			0.36		0.44		0.44	V
		5.5 V			0.36	4	0.44		0.44	
	I _{OL} = 75 mA [†]	5.5 V				C_{γ}	1.65		1.65	
lj	$V_{I} = V_{CC} \text{ or } GND$	5.5 V			±0.1	201	±1		±1	μA
I _{OZ}	$V_{O} = V_{CC}$ or GND	5.5 V			±0.5	32	±5		±5	μA
ICC	$V_{I} = V_{CC} \text{ or GND}, \qquad I_{O} = 0$	5.5 V			8		80		80	μA
ΔI_{CC}^{\ddagger}	One input at 3.4 V, Other inputs at V _{CC} or GND	5.5 V			0.9		1		1	mA
Ci	$V_{I} = V_{CC} \text{ or } GND$	5 V		3						pF
Co	$V_{O} = V_{CC}$ or GND	5 V		12						pF

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

[‡]This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V_{CC}.

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

			T _A = 25°C		T _A = 25°C 54ACT16823		3 74ACT16823		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
^f clock	Clock frequency		0	90	0	90	0	90	MHz
t _w Pulse duration	CLR low	3.3		3.3	115	3.3		20	
	Pulse duration	CLK high or low	5.5		5.5	PE-	5.5		ns
		CLR inactive	0.5		0.5	Q.	0.5		
t _{su}	Setup time before CLK↑	Data	7		3		7		ns
		CLKEN low	3.5		3.5		3.5		
^t h	Hold time after CLK↑	Data	0.5		0 .5		0.5		ns
		CLKEN high or low	2.5		2.5		2.5		115

SCAS160A - APRIL 1991 - REVISED APRIL 1996

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	T	₄ = 25°C	;	54ACT	16823	74ACT	16823	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
f _{max}			90			90	2	90		MHz
^t PLH	CLK	Q	4.2	7.5	10.6	4.2	12,1	4.2	12.1	ns
^t PHL		Q	4.8	8.3	11.5	4.8	12.9	4.8	12.9	115
^t PHL	CLR	Q	3.4	7.3	11.2	3.4	12.5	3.4	12.5	ns
^t PZH	OE	Q	2.4	5.9	9.5	2.4	10.7	2.4	10.7	ns
^t PZL	OE	y	3.3	7.1	11.3	3.3	12.8	3.3	12.8	115
^t PHZ	OE	OF Q	5.5	7.6	9.7	5.5	10.3	5.5	10.3	ns
^t PLZ	UE	Ŷ	4.6	6.7	8.8	4.6	9.4	4.6	9.4	115

operating characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER			TEST CO	TYP	UNIT	
	C _{nd} Power dissipation capacitance per flip-flop	Outputs enabled			42	рF
Cpd		Outputs disabled	C _L = 50 pF,	f = 1 MHz	24	рг

SCAS160A - APRIL 1991 - REVISED APRIL 1996

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
- Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f = 3 ns, t_f = 3 ns.

D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated