SCAS159C - JANUARY 1991 - REVISED APRIL 1996

| Wide                       | bers of the Texas Instruments<br>bus™ Family                                       | 74ACT169          | 952 WD PACKAGE<br>952 DL PACKAGE<br>(TOP VIEW) |                        |  |  |  |
|----------------------------|------------------------------------------------------------------------------------|-------------------|------------------------------------------------|------------------------|--|--|--|
| Input                      | s Are TTL-Voltage Compatible                                                       |                   |                                                |                        |  |  |  |
| Nonii                      | nverting Outputs                                                                   | 1OEAB             | $ _1 \cup$                                     | 56 ] 1 <del>0EBA</del> |  |  |  |
|                            | 16-Bit, Back-to-Back Registers Store                                               | 1CLKAB            | 2                                              | 55 1CLKBA              |  |  |  |
| Data                       | Flowing in Both Directions                                                         | 1CEAB             | 3                                              | 54 ] 1CEBA             |  |  |  |
| Flow-                      | -Through Architecture Optimizes                                                    | GND [             | 4                                              | 53 GND                 |  |  |  |
| PCB                        | Layout                                                                             | 1A1 🕻             | 5                                              | 52 ] 1B1               |  |  |  |
| <ul> <li>Distri</li> </ul> | ibuted V <sub>CC</sub> and GND Pin Configuration                                   | 1A2 🛛             | 6                                              | 51 ] 1B2               |  |  |  |
|                            | nizes High-Speed Switching Noise                                                   | v <sub>cc</sub> [ | 7                                              | 50 🛛 V <sub>CC</sub>   |  |  |  |
| EPIC                       | ™ (Enhanced-Performance Implanted                                                  | 1A3 [             |                                                | 49 🛛 1B3               |  |  |  |
|                            | S) 1-µm Process                                                                    | 1A4               |                                                | 48 <b>1</b> 1B4        |  |  |  |
|                            | nA Typical Latch-Up Immunity at                                                    | 1A5 L             |                                                | 47 <b>1</b> B5         |  |  |  |
| 125°C                      |                                                                                    | GND               |                                                | 46 GND                 |  |  |  |
|                            | age Options Include Plastic 300-mil                                                | 1A6 L             |                                                | 45 1B6                 |  |  |  |
|                            | ik Small-Outline (DL) Packages Using                                               | 1A7 L             |                                                | 44 B 1B7               |  |  |  |
|                            | il Center-to-Center Pin Spacings and                                               | 1A8 L             |                                                | 43 1B8                 |  |  |  |
|                            | nil Fine-Pitch Ceramic Flat (WD)                                                   | 2A1               |                                                | 42 2B1                 |  |  |  |
|                            | ages Using 25-mil Center-to-Center                                                 | 2A2               |                                                | 41 2B2                 |  |  |  |
|                            | Spacings                                                                           | 2A3               |                                                | 40 2B3                 |  |  |  |
|                            |                                                                                    | GND<br>2A4 [      |                                                | 39 GND<br>38 2B4       |  |  |  |
| descriptio                 | n                                                                                  | 7                 |                                                | 30 2B4<br>37 2B5       |  |  |  |
| The 'A                     | CT16952 are 16-bit registered transceivers                                         | 2A5  <br>2A6      |                                                | 37 U 2B5<br>36 U 2B6   |  |  |  |
|                            | ontain two sets of D-type flip-flops for                                           |                   |                                                | 35 V <sub>CC</sub>     |  |  |  |
|                            | rary storage of data flowing in either                                             | ×CC 4<br>2A7 [    |                                                | 34 2B7                 |  |  |  |
|                            | on. They can be used as two 8-bit<br>eivers or one 16-bit transceiver. Data on the | 2A7<br>2A8        |                                                | 33 2B8                 |  |  |  |

temporary storage of data flowing in either direction. They can be used as two 8-bit transceivers or one 16-bit transceiver. Data on the A or B bus is stored in registers on the low-to-high transition of the clock (CLKAB or CLKBA) input, provided that the clock-enable (CEAB or CEBA) input is low. Taking the output-enable (OEAB or OEBA) input low accesses the data on either port. To avoid false clocking of the flip-flops, CEAB (or CEBA) should not be switched from low to high while CLKAB (or CLKBA) is low.

The 74ACT16952 is packaged in TI's shrink small-outline package, which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

GND

2CEAB

2CLKAB

2OEAB

25

26

27

28

32 GND

31 2CEBA

30 2CLKBA

29 20EBA

The 54ACT16952 is characterized for operation over the full military temperature range of  $-55^{\circ}$ C to  $125^{\circ}$ C. The 74ACT16952 is characterized for operation from  $-40^{\circ}$ C to  $85^{\circ}$ C.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

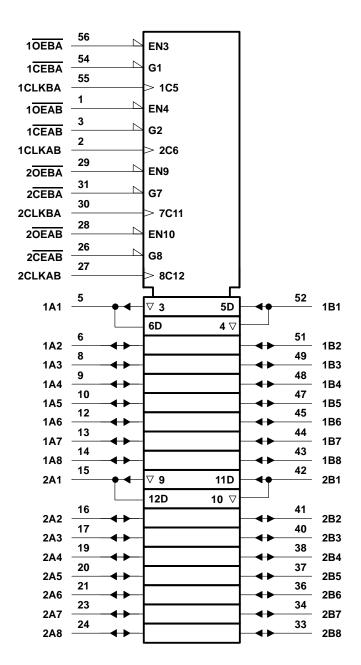
UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 1996, Texas Instruments Incorporated

# 54ACT16952, 74ACT16952 16-BIT REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS SCAS159C – JANUARY 1991 – REVISED APRIL 1996

#### FUNCTION TABLE<sup>†</sup>

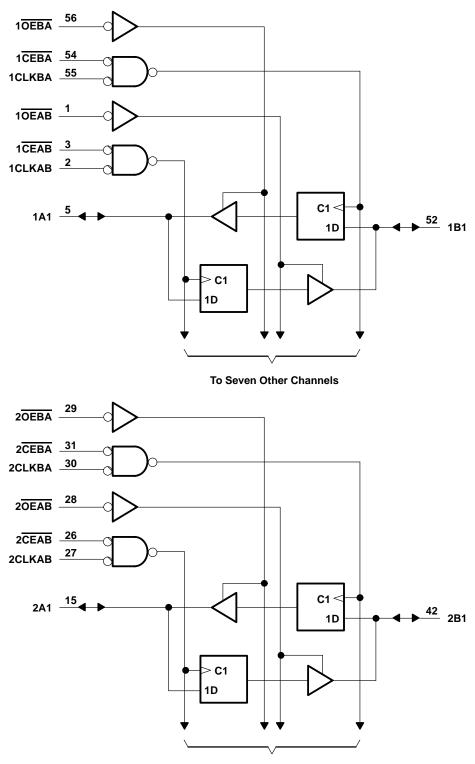

|      | INPUTS OUTPUT |      |   |                                      |  |  |  |  |  |  |
|------|---------------|------|---|--------------------------------------|--|--|--|--|--|--|
|      | INPUTS        |      |   |                                      |  |  |  |  |  |  |
| CEAB | CLKAB         | OEAB | Α | В                                    |  |  |  |  |  |  |
| н    | Х             | L    | Х | в <sub>0</sub> ‡<br>в <sub>0</sub> ‡ |  |  |  |  |  |  |
| х    | Н             | L    | Х | в <sub>0</sub> ‡                     |  |  |  |  |  |  |
| L    | $\uparrow$    | L    | L | L                                    |  |  |  |  |  |  |
| L    | $\uparrow$    | L    | Н | н                                    |  |  |  |  |  |  |
| х    | Х             | Н    | Х | Z                                    |  |  |  |  |  |  |

A-to-B data flow is shown; B-to-A data flow is similar but uses CEBA, CLKBA, and OEBA.

‡Level of B before the indicated steady-state input conditions were established



logic symbol<sup>†</sup>




<sup>†</sup> This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.



## 54ACT16952, 74ACT16952 **16-BIT REGISTERED TRANSCEIVERS** WITH 3-STATE OUTPUTS SCAS159C – JANUARY 1991 – REVISED APRIL 1996

### logic diagram (positive logic)



**To Seven Other Channels** 



SCAS159C - JANUARY 1991 - REVISED APRIL 1996

### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)<sup>†</sup>

| Supply voltage range, $V_{CC}$ $-0.5 V$ to 7Input voltage range, $V_I$ (see Note 1) $-0.5 V$ to $V_{CC}$ + 0.5Output voltage range, $V_O$ (see Note 1) $-0.5 V$ to $V_{CC}$ + 0.5Input clamp current, $I_{IK}$ ( $V_I < 0$ or $V_I > V_{CC}$ ) $\pm 20 \text{ m}$ Output clamp current, $I_{OK}$ ( $V_O < 0$ or $V_O > V_{CC}$ ) $\pm 50 \text{ m}$ Continuous output current, $I_O$ ( $V_O = 0$ to $V_{CC}$ ) $\pm 50 \text{ m}$ Continuous current through $V_{CC}$ or GND $\pm 400 \text{ m}$ Maximum package power dissipation at $T_A = 55^{\circ}$ C (in still air) (see Note 2): DL package $1.4 V_{CC}$ | V<br>NA<br>NA<br>NA<br>W |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Storage temperature range, $T_{stg}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.

#### recommended operating conditions (see Note 3)

|                     |                                    | 54ACT16952 74ACT16952 |     | 52  | UNIT |     |     |      |
|---------------------|------------------------------------|-----------------------|-----|-----|------|-----|-----|------|
|                     |                                    | MIN                   | NOM | MAX | MIN  | NOM | MAX | UNIT |
| VCC                 | Supply voltage                     | 4.5                   | 5   | 5.5 | 4.5  | 5   | 5.5 | V    |
| VIH                 | High-level input voltage           | 2                     | L.  | rμ  | 2    |     |     | V    |
| VIL                 | Low-level input voltage            |                       | EL  | 0.8 |      |     | 0.8 | V    |
| VI                  | Input voltage                      | 0                     | PH  | VCC | 0    |     | VCC | V    |
| Vo                  | Output voltage                     | 0                     | C)  | VCC | 0    |     | VCC | V    |
| ЮН                  | High-level output current          | ~                     | 20  | -24 |      |     | -24 | mA   |
| IOL                 | Low-level output current           | R                     | ,   | 24  |      |     | 24  | mA   |
| $\Delta t/\Delta v$ | Input transition rise or fall rate | 0                     |     | 10  | 0    |     | 10  | ns/V |
| ТА                  | Operating free-air temperature     | -55                   |     | 125 | -40  |     | 85  | °C   |

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.



SCAS159C - JANUARY 1991 - REVISED APRIL 1996

## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |                | TEST CONDITIONS                                               | V     | T <sub>A</sub> = 25°C |     |      | 54ACT | 16952 | 74ACT16952 |      | UNIT |  |
|-----------|----------------|---------------------------------------------------------------|-------|-----------------------|-----|------|-------|-------|------------|------|------|--|
|           |                |                                                               | vcc   | MIN                   | TYP | MAX  | MIN   | MAX   | MIN        | MAX  | UNIT |  |
|           |                |                                                               | 4.5 V | 4.4                   |     |      | 4.4   |       | 4.4        |      |      |  |
|           |                | I <sub>OH</sub> = -50 μA                                      | 5.5 V | 5.4                   |     |      | 5.4   |       | 5.4        |      |      |  |
| Vau       |                |                                                               | 4.5 V | 3.94                  |     |      | 3.8   |       | 3.8        |      | V    |  |
| VOH       |                | I <sub>OH</sub> = -24 mA                                      | 5.5 V | 4.94                  |     |      | 4.8   |       | 4.8        |      | V    |  |
|           |                | $I_{OH} = -50 \text{ mA}^{\dagger}$                           | 5.5 V |                       |     |      |       |       |            |      |      |  |
|           |                | $I_{OH} = -75 \text{ mA}^{\dagger}$                           | 5.5 V |                       |     |      | 3.85  | h     | 3.85       |      |      |  |
|           |                | L                                                             | 4.5 V |                       |     | 0.1  |       | 0.1   |            | 0.1  |      |  |
|           |                | I <sub>OL</sub> = 50 μA                                       | 5.5 V |                       |     | 0.1  |       | 0.1   |            | 0.1  |      |  |
| V         |                | I <sub>OL</sub> = 24 mA                                       | 4.5 V |                       |     | 0.36 | K     | 0.44  |            | 0.44 | V    |  |
| VOL       |                |                                                               | 5.5 V |                       |     | 0.36 | 202   | 0.44  |            | 0.44 | v    |  |
|           |                | $I_{OL} = 50 \text{ mA}^{\dagger}$                            | 5.5 V |                       |     |      | 202   |       |            |      | 1    |  |
|           |                | $I_{OL} = 75 \text{ mA}^{\dagger}$                            | 5.5 V |                       |     |      | 4     | 1.65  |            | 1.65 |      |  |
| lj        | Control inputs | $V_I = V_{CC}$ or GND                                         | 5.5 V |                       |     | ±0.1 |       | ±1    |            | ±1   | μΑ   |  |
| loz‡      | A or B ports   | $V_{O} = V_{CC}$ or GND                                       | 5.5 V |                       |     | ±0.5 |       | ±5    |            | ±5   | μΑ   |  |
| ICC       |                | $V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$            | 5.5 V |                       |     | 8    |       | 80    |            | 80   | μA   |  |
| ∆ICC§     |                | One input at 3.4 V,<br>Other inputs at V <sub>CC</sub> or GND | 5.5 V |                       |     | 0.9  |       | 1     |            | 1    | mA   |  |
| Ci        | Control inputs | VI = V <sub>CC</sub> or GND                                   | 5 V   |                       | 3   |      |       |       |            |      | pF   |  |
| Cio       | A or B ports   | V <sub>O</sub> = V <sub>CC</sub> or GND                       | 5 V   |                       | 12  |      |       |       |            |      | pF   |  |

<sup>†</sup> Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

<sup>‡</sup> For I/O ports, the parameter I<sub>OZ</sub> includes the input leakage current.

§ This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V<sub>CC</sub>.

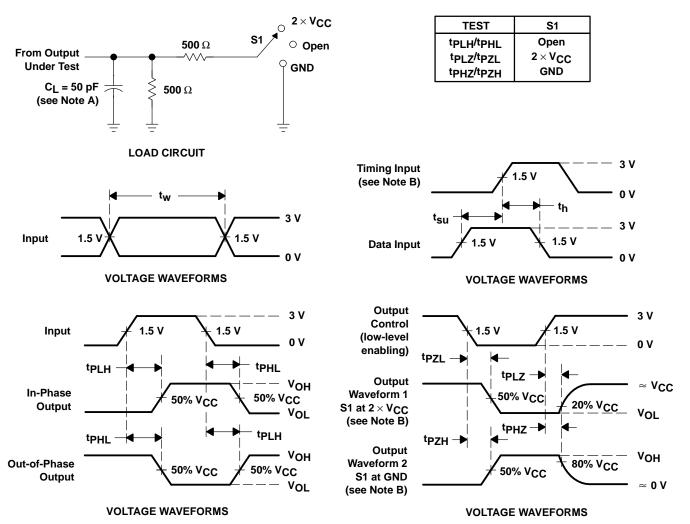
## timing requirements over recommended operating free-air temperature range, $V_{CC}$ = 5 V $\pm$ 0.5 V (unless otherwise noted)

|                 |                                    |              | T <sub>A</sub> = 25°C |     | 54ACT16952 74ACT16952 |     | UNIT |     |      |
|-----------------|------------------------------------|--------------|-----------------------|-----|-----------------------|-----|------|-----|------|
|                 |                                    |              | MIN                   | MAX | MIN                   | MAX | MIN  | MAX | UNIT |
| fclock          | f <sub>clock</sub> Clock frequency |              | 0                     | 75  | 0                     | 75  | 0    | 75  | MHz  |
| tw              | Pulse duration, CLK high or low    |              | 6.7                   |     | 6.7                   | 4   | 6.7  |     | ns   |
|                 |                                    | Data         | 5                     |     | 5                     |     | 5    |     |      |
| t <sub>su</sub> | Setup time before CLK <sup>↑</sup> | CEAB or CEBA | 6.5                   |     | 6.5                   | 1   | 6.5  |     | ns   |
| +.              |                                    | Data         | 1                     |     | 101                   |     | 1    |     | 20   |
| th              | Hold time after CLK↑               | CEAB or CEBA | 0                     |     | 0                     |     | 0    |     | ns   |



SCAS159C - JANUARY 1991 - REVISED APRIL 1996

# switching characteristics over recommended operating free-air temperature range, $V_{CC}$ = 5 V $\pm$ 0.5 V (unless otherwise noted) (see Figure 1)


| PARAMETER        | FROM         | то       | T <sub>A</sub> = 25°C |     |      | 54ACT16952   |             | 74ACT16952 |      | UNIT |
|------------------|--------------|----------|-----------------------|-----|------|--------------|-------------|------------|------|------|
| FARAMETER        | (INPUT)      | (OUTPUT) | MIN                   | TYP | MAX  | MIN          | MAX         | MIN        | MAX  | UNIT |
| f <sub>max</sub> |              |          | 75                    |     |      | 75           |             | 75         |      | MHz  |
| <sup>t</sup> PLH | CLK          | A or B   | 4.7                   | 8.5 | 10.7 | 4.7          | 11.8        | 4.7        | 11.8 | ns   |
| <sup>t</sup> PHL |              |          | 4.9                   | 8.7 | 10.5 | 4.9          | 11.7        | 4.9        | 11.7 |      |
| <sup>t</sup> PLH |              | A or B   | 4.7                   | 8.5 | 10.7 | 4.7          | 11.8        | 4.7        | 11.8 |      |
| <sup>t</sup> PHL | CEBA or CEAB |          | 4.9                   | 8.7 | 10.5 | 4.9          | <b>11.7</b> | 4.9        | 11.7 | ns   |
| <sup>t</sup> PZH | 0500 0500    | A or D   | 3.4                   | 8.1 | 10.2 | 3.4          | 11.2        | 3.4        | 11.2 |      |
| <sup>t</sup> PZL | OEBA or OEAB | A or B   | 4.2                   | 9.6 | 11.8 | 4.2          | 13          | 4.2        | 13   | ns   |
| <sup>t</sup> PHZ |              | A or B   | 5.2                   | 7.5 | 8.9  | <b>Q</b> 5.2 | 9.4         | 5.2        | 9.4  |      |
| <sup>t</sup> PLZ | OEBA or OEAB |          | 4.5                   | 6.7 | 8.2  | 4.5          | 8.7         | 4.5        | 8.7  | ns   |

## operating characteristics, V\_{CC} = 5 V, T<sub>A</sub> = 25°C

| PARAMETER |                                               |                 | TEST CO                 | TYP       | UNIT |    |
|-----------|-----------------------------------------------|-----------------|-------------------------|-----------|------|----|
| Cpd       | Power dissipation capacitance per transceiver | Outputs enabled | C <sub>L</sub> = 50 pF, | f = 1 MHz | 55   | pF |



SCAS159C - JANUARY 1991 - REVISED APRIL 1996



### PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  1 MHz, Z<sub>O</sub> = 50  $\Omega$ , t<sub>f</sub> = 3 ns, t<sub>f</sub> = 3 ns.
- D. The outputs are measured one at a time with one input transition per measurement.

#### Figure 1. Load Circuit and Voltage Waveforms



#### **IMPORTANT NOTICE**

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated