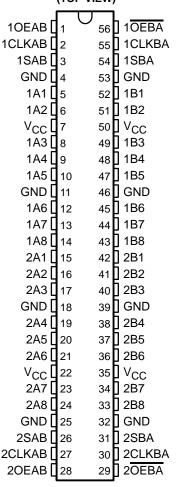
SCAS128C - MARCH 1990 - REVISED APRIL 1996


- Members of the Texas Instruments
 Widebus™ Family
- Inputs Are TTL-Voltage Compatible
- Independent Registers and Enables for A and B Buses
- Multiplexed Real-Time and Stored Data
- Flow-Through Architecture Optimizes PCB Layout
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- EPIC[™] (Enhanced-Performance Implanted CMOS) 1-µm Process
- 500-mA Typical Latch-Up Immunity at 125°C
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) Packages Using 25-mil Center-to-Center Pin Spacings and 380-mil Fine-Pitch Ceramic Flat (WD) Packages Using 25-mil Center-to-Center Spacings

description

The 'ACT16652 are 16-bit bus transceivers consisting of D-type flip-flops and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers. The devices can be used as two 8-bit transceivers or one 16-bit transceiver.

Complementary output-enable (OEAB and OEBA) inputs are provided to control the transceiver functions. Select-control (SAB and SBA) inputs are provided to select whether real-time or stored data is transferred. A low input level selects real-time data, and a high input level selects stored data. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'ACT16652.

54ACT16652... WD PACAGE 74ACT16652...DL PACKAGE (TOP VIEW)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

SCAS128C - MARCH 1990 - REVISED APRIL 1996

description (continued)

Data on the A or B bus, or both, can be stored in the internal D flip-flops by low-to-high transitions at the appropriate clock (CLKAB or CLKBA) inputs, regardless of the levels on the select-control or output-enable inputs. When SAB and SBA are in the real-time transfer mode, it is also possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and OEBA. In this configuration, each output reinforces its input. Thus, when all other data sources to the two sets of bus lines are at high impedance, each set of bus lines remains at its last state.

The 74ACT16652 is packaged in TI's shrink small-outline package, which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The 54ACT16652 is characterized for operation over the full military temperature range of -55° C to 125°C. The 74ACT16652 is characterized for operation from -40° C to 85°C.

FUNCTION TABLE

		INP	UTS			DATA	A 1/0†	
OEAB	OEBA	CLKAB	CLKBA	SAB	SBA	A1-A8	B1-B8	OPERATION OR FUNCTION
L	Н	L	L	Х	Х	Input	Input	Isolation
L	Н	\uparrow	\uparrow	X	Χ	Input	Input	Store A and B data
Х	Н	1	L	Х	Х	Input	Unspecified [‡]	Store A, hold B
Н	Н	\uparrow	\uparrow	χ‡	Χ	Input	Output	Store A in both registers
L	Х	L	\uparrow	Х	Х	Unspecified [‡]	Input	Hold A, store B
L	L	\uparrow	\uparrow	X	χ‡	Output	Input	Store B in both registers
L	L	Х	Х	Х	L	Output	Input	Real-time B data to A bus
L	L	X	L	X	Н	Output	Input	Stored B data to A bus
Н	Н	Х	Х	L	Х	Input	Output	Real-time A data to B bus
Н	Н	L	Χ	Н	Χ	Input	Output	Stored A data to B bus
Н	L	L	L	Н	Н	Output	Output	Stored A data to B bus and stored B data to A bus

[†] The data-output functions may be enabled or disabled by a variety of level combinations at OEAB or OEBA. Data-input functions are always enabled; i.e., data at the bus terminals is stored on every low-to-high transition of the clock inputs.

[‡] Select control = L; clocks can occur simultaneously.

Select control = H; clocks must be staggered to load both registers.

SCAS128C - MARCH 1990 - REVISED APRIL 1996

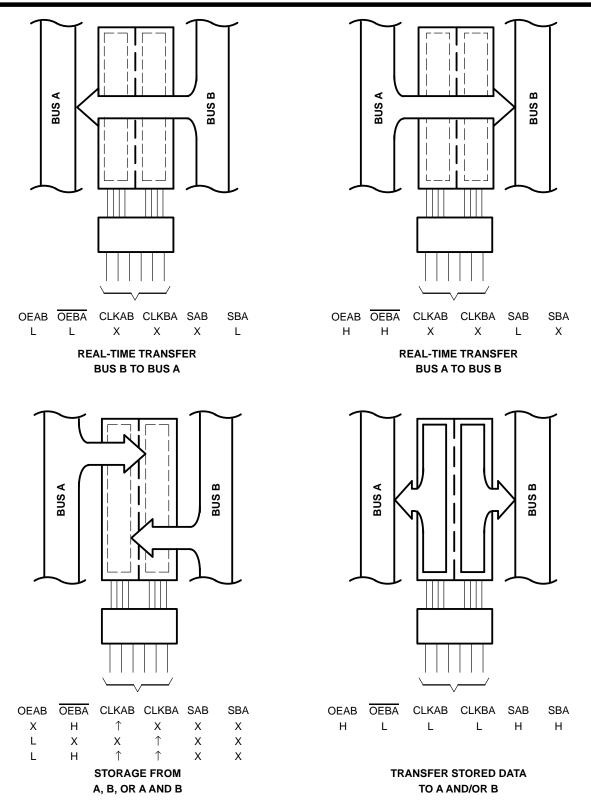
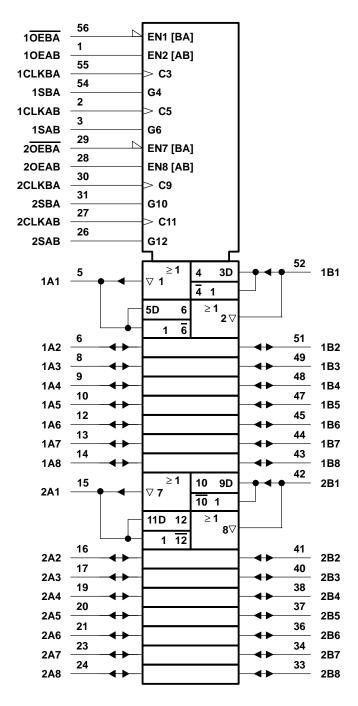
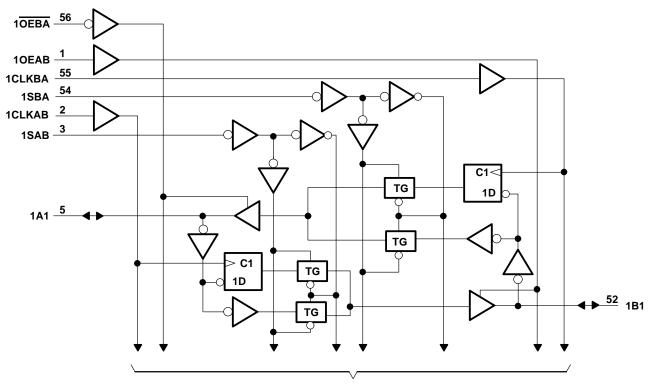
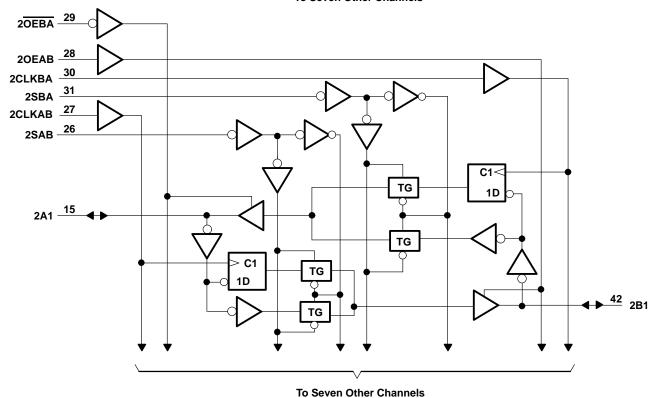



Figure 1. Bus-Management Functions


logic symbol†


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

SCAS128C - MARCH 1990 - REVISED APRIL 1996

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (see Note 1)–($0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Output voltage range, V _O (see Note 1)	$0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	±20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC})	±50 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	±50 mA
Continuous current through V _{CC} or GND	±400 mA
Maximum package power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 2): DL package	1.4 W
Storage temperature range, T _{stq}	65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 3)

		54ACT16652			74	UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2		h	2			V
V _{IL}	Low-level input voltage		Š	0.8			0.8	V
٧ _I	Input voltage	0	PA	VCC	0		VCC	V
٧o	Output voltage	0	7	VCC	0		VCC	V
ІОН	High-level output current		3	-24			-24	mA
lOL	Low-level output current	20,	5	24			24	mA
Δt/Δν	Input transition rise or fall rate	0		10	0		10	ns/V
TA	Operating free-air temperature	-55		125	-40		85	°C

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

^{2.} The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.

SCAS128C - MARCH 1990 - REVISED APRIL 1996

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TER TEST CONDITIONS VCC		T,	T _A = 25°C			16652	74ACT16652		UNIT	
		TEST CONDITIONS	v _{cc}	MIN	TYP	MAX	MIN	MAX	MIN	MAX	ONIT	
		I _{OH} = -50 μA	4.5 V	4.4			4.4		4.4			
		ΙΟΗ = -50 μΑ	5.5 V	5.4			5.4		5.4			
Vон		I _{OH} = -24 mA	4.5 V	3.94			3.8		3.8		V	
G		IOH = -24 IIIA	5.5 V	4.94			4.8		4.8			
		I _{OH} = -75 mA [†]	5.5 V				3.85	N.	3.85			
		I _{OL} = 50 μA	4.5 V			0.1		0.1		0.1	V	
		10Γ = 30 μΑ	5.5 V			0.1		0.1		0.1		
VOL		10 24 mA	4.5 V			0.36	, C)	0.44		0.44		
		I _{OL} = 24 mA	5.5 V			0.36	20	0.44		0.44		
		I _{OL} = 75 mA [†]	5.5 V				Dy,	1.65		1.65		
IĮ	Control inputs	V _I = V _{CC} or GND	5.5 V			±0.1	y	±1		±1	μΑ	
loz‡	A or B ports	$V_O = V_{CC}$ or GND	5.5 V			±0.5		±5		±5	μΑ	
Icc		$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			8		80		80	μΑ	
ΔlCC§		One input at 3.4 V, Other inputs at V _{CC} or GND	5.5 V			0.9		1		1	mA	
Ci	Control inputs	V _I = V _{CC} or GND	5 V		4						pF	
C _{io}	A or B ports	$V_O = V_{CC}$ or GND	5 V		12						pF	

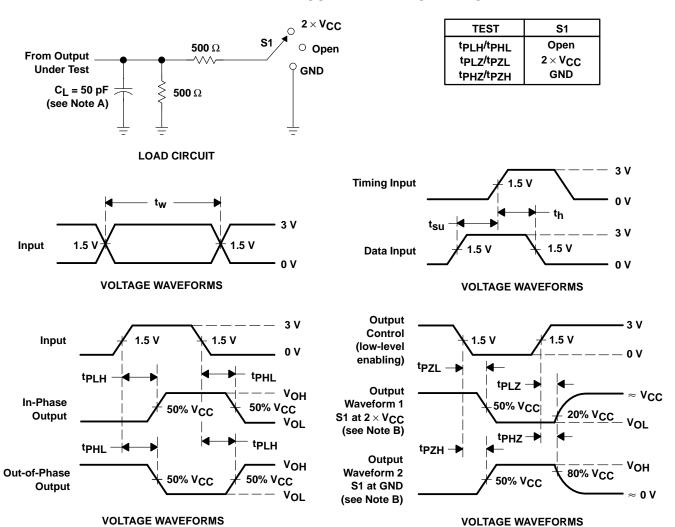
[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

			T _A = 25°C		54ACT16652		74ACT16652	
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
fclock	Clock frequency	0	90	0	90	0	90	MHz
t _W	Pulse duration, CLKAB or CLKBA high or low	5.5		5.5	TEN TO	5.5		ns
t _{su}	Setup time, A before CLKAB↑ or B before CLKBA↑	4.5		4.5	7,	4.5		ns
t _h	Hold time, A after CLKAB↑ or B after CLKBA↑	1		1		1		ns

[§] This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or VCC.

SCAS128C - MARCH 1990 - REVISED APRIL 1996


switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	TO (OUTPUT)	T,	T _A = 25°C			16652	74ACT16652		UNIT
PARAMETER	(INPUT)		MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNII
fmax			90			90		90		MHz
^t PLH	A or B	B or A	3.7	7.2	9.4	3.7	10.5	3.7	10.5	ns
^t PHL	A or B	BOIA	3	8.1	10.5	3	11.6	3	11.6	10
^t PLH	CLKBA or CLKAB	A or B	4.5	8.7	11.2	4.5	12.3	4.5	12.3	nc
^t PHL		AOIB	4.9	8.9	11.3	4.9	12.3	4.9	12.3	ns
^t PLH	SBA or SAB (with A or B high)	A or B	4.9	10.4	14.1	4.9	16	4.9	16	ns
^t PHL			4.6	8.4	10.6	4.6	11.7	4.6	11.7	
^t PLH	SBA or SAB	A or B	3.9	7.8	10	3.9	11.2	3.9	11.2	ns
^t PHL	(with A or B low)		5.6	12.3	14.9	5.6	16.9	5.6	16.9	
^t PZH	OEBA	А	3	8.1	10.5	3	11.7	3	11.7	ns
t _{PZL}	OEBA		3.9	9.4	12	3.9	13.4	3.9	13.4	110
^t PHZ	OF DA	۸	5.3	7.4	8.9	5.3	9.5	5.3	9.5	ns
^t PLZ	OEBA	A	4.8	6.8	8.6	4.8	9.2	4.8	9.2	115
^t PZH	OEAB	В	4.1	7.7	9.8	4.1	10.8	4.1	10.8	ns
^t PZL	UEAB	AD B	5	9	11	5	12.4	5	12.4	115
^t PHZ	OEAB	В	4.4	8.1	10.1	4.4	10.5	4.4	10.5	ns
tPLZ] OLAB		4.3	7.7	9.7	4.3	9.9	4.3	9.9	115

operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CO	TYP	UNIT		
C _{pd}	Dower discipation canacitance per transcriver	Outputs enabled	C 50 pE	f = 1 MHz	57	pF
	Power dissipation capacitance per transceiver	Outputs disabled	$C_L = 50 pF$,	I = I IVITIZ	13	pr

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_f = 3 \text{ ns}$, $t_f = 3 \text{ ns}$.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated